3. Word Puzzles and Games

Robert Snapp
rsnapp@uvm.edu

Department of Computer Science
University of Vermont
1. Word Games
 - Riddles
 - Lipograms
 - Palindromes
 - Anagrams

2. Computational Questions
 - Heuristics
 - Trees (and Factorial Trees)
 - The Multiplication Principle
 - Enumerating Anagrams having \(n \) Unique Symbols
 - Enumerating Anagrams having Repeated Symbols

3. References
As I was going to St. Ives,
I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits;
Kits, cats, sacks, and wives,
How many were going to St. Ives?
As I was going to St. Ives,
I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits;
Kits, cats, sacks, and wives,
How many were going to St. Ives?

Probably only one person: the “I” of the rhyme.
A Lipogram

Gadsby was walking back from a visit down in Branton Hill’s manufacturing district on a Saturday night. A busy day’s traffic had had its noisy run; and with not many folks in sight. His Honor got along without having to stop to grasp a hand, or talk; for a Mayor out of City Hall is a shining mark for any politician. And so, coming to Broadway, a booming bass drum and sounds of singing, told of a small Salvation Army unit carrying on amidst Broadway’s night shopping crowds. Gadsby, walking toward that group, saw a young girl, back toward him, just finishing a long, soulful oration . . .

Another Lipogram

Enfettered, these sentences repress free speech. The text deletes selected letters. We see the revered exegete reject metred verse: the sestet, the tercet — even \textit{les scènes élevées en grec}. He rebels. He sets new precedents. He lets cleverness exceed decent levels. He eschews the esteemed genres, the expected themes — even \textit{les belles lettres en vers}. He prefers the perverse French esthetes: Verne, Péret, Genet, Perec — hence, he pens fervent screeds, then enters the street, where he sells these letterpress newsletters, three cents per sheet. He engenders perfect newness wherever we need fresh terms.

Palindromes

- A man, a plan, a canal — Panama!
- Madam, I’m Adam.
- Was it a bat I saw?
- Rise to vote, sir.
- Draw, O Caesar, erase a coward.
- Egad, a base life defiles a bad age.
The oldest known anagrams may have been written in 260 BC by Lycophron, a Greek poet. His poem “Cassandra” contains two:

- The letters in the name of Ptolemy Philadelphus

\[\Pi\Omega\Lambda\E\M\A\I\O\Sigma,\]
\[\Lambda\Pi\O\ M\E\L\I\T\O\Sigma,\]

which translates to “made of honey.”

- The letters in the name of Arsinoë (Ptolemy’s queen),

\[\A\P\S\I\N\O\H,\]
\[\H\P\A\S\ I\O\N,\]

which means “Hera’s violet.”
Anagrams: American Presidents

- ABRAHAM LINCOLN: oh, call man “brain”
- HERBERT CLARK HOOVER: the ever dark horror
- HARRY S TRUMAN: rash army runt
- DWIGHT DAVID EISENHOWER: he did view the war doings
- JAMES EARL CARTER: a rare calm jester
- RONALD WILSON REAGAN: no darlings, no ERA law
- GEORGE HERBERT WALKER BUSH: huge berserk rebel warthog

More Anagrams

- INCOMPREHENSIBLE: problem in Chinese
- STORMY WEATHER: showery matter
- ROCKY MOUNTAINS: o, man — ski country
- THE PIANO BENCH: beneath Chopin

Anagrams

Unscramble these four Jumbles, one letter to each square, to form four ordinary words.

PUGOR
HAWSS
CLAICO
KUNFLY

Print answer here: HER

Yesterday’s Jumbles: WAGER GRIME INFANT GUITAR
Answer: When the storm hit, the church bells in the small town were — “RINGING” WET

Now arrange the circled letters to form the surprise answer, as suggested by the above cartoon.

What the Aging Beauty was able to keep when she had a face-lift.
Anagrams: Four Questions

1. How do you unscramble a jumbled word, like PUGOR?
2. Can we create an algorithm (or procedure) so that anyone, even a computer can unscramble a jumbled word?
3. How many anagrams of PUGOR are there? That is, in how many different ways can these five letters be rearranged as a single word?
4. How many anagrams does an n-letter word have? (Do all n-letter words have the same number of anagrams?)
The Multiplication Principle

In general, if a construction (or process) can be represented as a sequence of \(k \) steps, and the number of ways of performing each step is independent of any previous choices, and if \(n_1, n_2, n_3, \ldots, n_k \) denote the number of ways of performing each step, then

\[
N = n_1 \times n_2 \times n_3 \times \cdots \times n_k,
\]

denotes the total number of different constructions (or processes).

This statement is called \textit{the multiplication principle}.

The number of permutations of “abcd” is found by setting \(k = 4 \), with \(n_1 = 4 \), \(n_2 = 3 \), \(n_3 = 2 \), and \(n_1 = 1 \), hence

\[
N = n_1 \times n_2 \times n_3 \times n_4 = 4 \times 3 \times 2 \times 1 = 4!
\]
Some Problem Solving Heuristics

1. If the problem is too hard, try to solve an easier problem first.
2. *Divide and Conquer*: Hard problems can often be broken up into pieces, where each piece corresponds to an easier problem.
3. *Generalize*: Sometimes it is easier to solve a more general problem first.
4. *Make a picture*: Try to represent the problem as a picture.
5. *Construct an abstraction*. An abstraction is a simpler representation of the problem we are trying to solve. Reducing the problem to an abstraction that one has seen before often will suggest a simple solution.
A set is an unordered collection of objects (e.g., things, symbols, concepts, labels) in which each element (or member) appears no more than once. Matching left and right curly brackets, \(\{ \ldots \} \), are used to denote a set. Thus the set of odd numbers between 0 and 10 is \(\{ 1, 3, 5, 7, 9 \} \), and the set of suits in a standard deck of playing cards is \(\{ \spadesuit, \heartsuit, \clubsuit, \diamondsuit \} \). Since sets are unordered collections, \(\{ 1, 3, 5, 7, 9 \} \) and \(\{ 3, 1, 9, 5, 7 \} \) describe the same set.

The empty set is a special set that contains no objects at all. It is usually written as \(\emptyset \), or as \(\{ \} \).

A multiset is an unordered collection of objects in which each element can appear an arbitrary number of times. Thus \(\{ 1, 3, 3, 9 \} \) is a multiset, but not a set. (Is every set also a multiset?)

A sequence is an ordered collection of objects. Often we will use left and right matching parentheses to denote a sequence, e.g. the alphabet is usually represented by the ordered sequence \((A, B, C, \ldots, Z) \).
Factorial Tree
The black dots are called *nodes* or *vertices*. The node at the top is called the *root*. The bottom nodes are called *leaves*. The colored lines are called *branches*, *edges*, or *links*.
There are 6 anagrams using the letters a, b, c, one for each leaf node. Two begin with a, two begin with b, and two begin with c.
There are 24 anagrams using the letters a, b, c, d one for each leaf node. Six begin with a, six with b, six with c, and six with d.
A Riddle (Revised)

As I was going to St. Ives,
I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits;
Kits, cats, sacks, and wives,
How many were leaving St. Ives?
Factorial tree with 5 different symbols

Number of leaf nodes: \(5! = 5 \times 4 \times 3 \times 2 \times 1 = 5 \times 4! = 120. \)
Permutations of n different symbols

Each time we add a symbol we create a new level in the tree.
Number of permutations of n objects is

$$n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2) \times \cdots \times 3 \times 2 \times 1.$$

This can be understood from either the perspective of factorial trees, or the previously defined multiplication principle.
Anagrams of words with repeated symbols
Anagrams of words with repeated symbols

\{a_1, a_2, b_1\}

\begin{align*}
 a_1 a_2 b_1 \\
 a_1 b_1 a_2 \\
 a_2 a_1 b_1 \\
 a_2 b_1 a_1 \\
 b_1 a_1 a_2 \\
 b_1 a_2 a_1
\end{align*}
Anagrams with repeated letters

How many anagrams of \textit{NEEDED} exactly match \textit{NEEDED}?

<table>
<thead>
<tr>
<th></th>
<th>EEE</th>
<th>EEE</th>
<th>EEE</th>
<th>EEE</th>
<th>EEE</th>
<th>EEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
</tr>
<tr>
<td>DD</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
<td>NEEDED</td>
</tr>
</tbody>
</table>

By the multiplication principle, the number of times each anagram of \textit{NEEDED} is repeated equals $3! \cdot 2!$.

Consequently, the number of \textit{different} (or \textit{unique}) anagrams of \textit{NEEDED} equals

\[
\frac{6!}{3! \cdot 2!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3! \cdot 2!} = 60.
\]
Anagrams with words with repeated symbols

- How many different anagrams are there of “abc”?
- How many different anagrams are there of “aaa”?
- How many different anagrams are there of “aab”?
- How many different anagrams are there of “abcd”?
- How many different anagrams are there of “aaaa”?
- How many different anagrams are there of “aaab”?
- How many different anagrams are there of “aabb”?
Anagrams of words with repeated letters

Consider the word **MISSISSIPPI**. How many unique permutations of these letters exist? First we count the frequency (number of occurrences) of each letter:

<table>
<thead>
<tr>
<th>Letter</th>
<th>I</th>
<th>M</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

As a check, note that \(n = 4 + 1 + 2 + 4 = 11 \), the length of the word. The number of unique permutations is then,

\[
\frac{11!}{4! \cdot 1! \cdot 2! \cdot 4!} = 34,650.
\]

More generally, for a word that consists of \(k \) different letters of the alphabet, with \(r_1 \) repetitions of the first letter, \(r_2 \) of the second, \ldots, \(r_k \) of the \(k \)-th letter; the number of unique permutations equals

\[
\frac{(r_1 + r_2 + \cdots + r_k)!}{r_1! \cdot r_2! \cdots r_k!}.
\]
References

