1. The Quicksort Algorithm

Robert R. Snapp
rsnapp@uvm.edu

Department of Computer Science
University of Vermont

Last modified on April 6, 2014
Outline

1. The Algorithm
2. Complexity Analysis
3. Summing Lemmas
 - Harmonic Numbers H_n
4. Expected Number of Comparisons
5. Empirical Comparison
6. Bibliography
The quicksort algorithm

Problem: Given a sequence of numbers, \((x_1, x_2, \ldots, x_n)\), find a permutation \(\pi_1, \pi_2, \ldots, \pi_n\) of \(\{1, 2, \ldots, n\}\) such that \(x_{\pi_i} \leq x_{\pi_j}\) for all \(i < j\), making \((x_{\pi_1}, x_{\pi_2}, \ldots, x_{\pi_n})\) an increasing-ordered list.

For example, \((24, 86, 12, 33)\) becomes \((12, 24, 33, 86)\).

Hoare’s [2] 1962 *quicksort* algorithm elegantly performs this trick recursively. In Haskell, for example:

```haskell
qsort []     = []
qsort (x:xs) = qsort [y | y <- xs, y <  x] ++ [x] ++ qsort [y | y <- xs, y >= x]
```
Quicksort in pseudocode

Quicksort \((A, p, r)\)

1. if \(p < r\)
2. \(q = \text{Partition}(A, p, r)\)
3. Quicksort\((A, p, q - 1)\)
4. Quicksort\((A, q + 1, r)\)

where,

Partition \((A, p, r)\)

1. \(x = A[r] \quad \text{// The pivot}\)
2. \(i = p - 1 \quad \text{// The bookmark}\)
3. for \(j = p\) to \(r - 1\)
4. if \(A[j] \leq x\)
5. \(i = i + 1\)
6. exchange \(A[i] \text{ with } A[j]\)
7. exchange \(A[i + 1] \text{ with } A[r]\)
8. return \(i + 1\)
Complexity analysis

The worst-case performance of quicksort occurs if the elements in input list are ordered monotonically. In this case every element is eventually compared with every other one, resulting in a total of

$$\binom{n}{2} = \frac{n(n-1)}{2} = \mathcal{O}(n^2)$$

comparisons. The number of comparisons is minimized if pivots can be chosen so that each sublist is evenly partitioned at each level of the algorithm. In this case the number of comparisons $C(n)$ satisfies the recurrence relation:

$$C(n) \leq 2C(n/2) + n - 1, \text{ with } C(0) = C(1) = 0.$$

Whence $C(n) \leq n \log_2 n + n = \mathcal{O}(n \ln n)$ [1]. Unfortunately, it is difficult to select pivots in this way without clairvoyance. However, if either the pivots are chosen at random, or if the order of the input list is randomized, then using probability theory we will show that the expected number of comparisons is reduced to

$$\mathbb{E}\{C(n)\} = 2n \ln n + \mathcal{O}(n) = \mathcal{O}(n \ln n).$$
Lemma (Triangular sums)

\[
\sum_{1 \leq i < j \leq n} a_{i,j} \overset{\text{def}}{=} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i,j} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{i,j}.
\]

Proof (by picture):
Lemma (Triangular sums)

\[\sum_{1 \leq i < j \leq n} a_{i,j} \overset{\text{def}}{=} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i,j} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{i,j}. \]

Proof (by picture):
Lemma (Triangular sums)

\[\sum_{1 \leq i < j \leq n} a_{i,j} \overset{\text{def}}{=} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i,j} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{i,j}. \]

Proof (by picture):
Lemma (Triangular sums (alternate form))

\[\sum_{i=1}^{n-1} \sum_{k=2}^{n+1-i} a_{i,k} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} a_{i,k}. \]

Proof (by picture):
Lemma (Triangular sums (alternate form))

\[
\sum_{i=1}^{n-1} \sum_{k=2}^{n+1-i} a_{i,k} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} a_{i,k}.
\]

Proof (by picture):

![Diagram showing the proof of the lemma](image)
Lemma (Triangular sums (alternate form))

\[
\sum_{i=1}^{n-1} \sum_{k=2}^{n+1-i} a_{i,k} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} a_{i,k}.
\]

Proof (by picture):

![Diagram showing the proof of the triangular sums lemma](image)
Definition (Harmonic numbers)

The n-th harmonic number is defined by

$$H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

For example, $H_1 = 1$, $H_2 = 1 + \frac{1}{2} = \frac{3}{2}$, $H_3 = \frac{11}{6}$, etc.
Lemma (Bounds on the Harmonic numbers, H_n)

For $n \geq 1$,

$$\ln(n + 1) \leq H_n \leq 1 + \ln n.$$

Proof (by picture):

$$\int_0^n \frac{1}{x+1} \, dx \leq H_n \leq 1 + \int_1^n \frac{1}{x} \, dx.$$
Lemma (Asymptotic approximation of \(H_n\))

\[
H_n = \sum_{k=1}^{n} \frac{1}{k} \sim \gamma + \ln n + \frac{1}{2n} - \frac{1}{12n^2} + \frac{1}{120n^4} + O(n^{-6}) ,
\]

where \(\gamma = \int_{1}^{\infty} \left(\frac{1}{[x]} - \frac{1}{x} \right) \, dx \approx 0.57721 \cdots\) is the Euler-Mascheroni constant.

The (♦♦♦) proof, based on Euler’s summation formula

\[
\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x) \, dx + \sum_{k=1}^{m} \frac{B_k}{k!} f^{(k-1)}(x)|_{a}^{b} + R_m ,
\]

where \(B_k\) is the \(k\)-th Bernoulli number, and \(R_m = \frac{(-1)^{m+1}}{m!} \int_{a}^{b} B_m(x - [x]) f^{(m)}(x) \, dx\) is a remainder term, can be found in Chapter 9 of *Concrete Mathematics* by Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Addison-Wesley, Reading, MA, 1994.
Theorem (Expected number of comparisons by quicksort)

The expected number of comparisons used by quicksort, when applied to a list of \(n \) numbers, is

\[
\mathbb{E}\{C(n)\} = 2(n + 1)H_n - 4n = 2n \log n + \Theta(n).
\]

Proof: Let \(X_{i,j} = 1 \) if at some point in the course of the algorithm \(x_{\pi_i} \) is compared to \(x_{\pi_j} \); otherwise \(X_{i,j} = 0 \). The total number of comparisons is then given by

\[
C(n) = \sum_{i<j} X_{i,j} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i,j}.
\]

(Observe that in the worst case \(X_{i,j} \) always equals 1, so that \(C(n) = \binom{n}{2} \), as mentioned earlier.) Using the linearity of expectation,

\[
\mathbb{E}\{X\} = \mathbb{E}\left\{ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i,j} \right\} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}\{X_{i,j}\}.
\]
Since $X_{i,j}$ is a binary (or indicator) random variable, $E\{X_{i,j}\}$ equals the probability that x_{π_i} is at some time compared to x_{π_j}. This can only happen if one of them is the first pivot chosen from the set $\{x_{\pi_i}, x_{\pi_i+1}, \ldots, x_{\pi_j}\}$. If we assume pivots are selected at random, then

$$E\{X_{i,j}\} = \frac{2}{j - i + 1}.$$

Thus,

$$E\{X\} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1},$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k},$$

$$= \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k},$$

$$= \sum_{k=2}^{n} (n + 1 - k) \frac{2}{k} = 2(n + 1) \sum_{k=1}^{n} \frac{1}{k} - 4n$$

$$= 2(n + 1)H_n - 4n.$$
Simulation results

Quicksort estimates with 1000 trials

\[\binom{n}{2} \]

\[2(n + 1)H_n - 4n \]
Bibliography I
