1. (35 pts.) A motor turns a bar. A uniform bar of length l and mass m is turned by a motor whose shaft is attached to the end of the bar at O. The angle that the bar makes (measured counter-clockwise) from the positive x axis is known as a function of time, $\theta(t) = 2\pi t/\omega_0^2$. Neglect gravity.

 a.) (10 pts.) Draw a free body diagram of the bar at $t = 1$ sec.

 b.) (5 pts.) Find $\vec{\omega}$, the angular velocity, and $\vec{\alpha}$, the angular acceleration, of the bar at $t = 1$ sec.

 c.) (5 pts.) Find the acceleration of the center of mass of the bar at $t = 1$ sec.

 d.) (5 pts.) Find \vec{F}_O, the force acting on the bar from the motor at point O, at $t = 1$ sec.

 e.) (5 pts.) Find M_O, the torque applied to the bar from the motor at point O, at $t = 1$ sec.

 f.) (5 pts.) Find the power into the system motor at $t = 1$ sec. (Hint: $P_{in} = \dot{E}_K$, where $P_{in} = \sum \dot{M}_O \cdot \vec{\omega}$ and $\dot{E}_K = (1/2)I^O \dot{\omega}^2$.)

2. (30 pts.) Massless pulley, dumbbell, and a hanging mass. A block of mass m falls vertically but is supported by an inextensible massless string which is wrapped around an ideal (massless, frictionless) pulley with radius a and center at O. The pulley is welded to a dumbbell. The dumbbell is made of a massless rod welded to uniform solid spheres at A and B, each of radius R and mass M and each of whose center is a distance ℓ from O. At the instant in question, the dumbbell is known to make an angle θ with respect to the positive x axis and to be spinning at rate $\dot{\theta}$. Point C is a distance h down from O. There is gravity.

 a.) (10 pts.) Draw separate free body diagrams of (i) the dumbbell plus pulley, and (ii) the block.

 b.) (10 pts.) Find I^A_C, the polar moment of inertia of the dumbbell with respect to point O in terms of some or all of m, M, a, R, and ℓ.

 c.) (10 pts.) Find the \vec{a}_B, the acceleration of the block of mass m, in terms of some or all of m, M, a, R, ℓ, g, $\dot{\theta}$, i, and j.

3. (35 pts.) Circular rigid body motion: brake arm and rotating cylinder. A brake arm of negligible mass and the dimensions shown is pinned frictionlessly at point Q. At $t = 0$, when the brake arm contacts the top of the cylinder of radius R and mass m at point C, the cylinder is turning at rate ω_0, CW. The cylinder is supported by a frictionless hinge at O. The coefficient of friction between the brake arm and the cylinder is μ. A force P is applied to the end of the brake arm as shown in a direction perpendicular to the bar throughout its motion. Neglect gravity.

 a.) (10 pts.) Draw separate FBD's of the brake arm and the cylinder.

 b.) (10 pts.) Find α, the angular acceleration of the cylinder, in terms of some or all of m, R, h, ℓ, d, μ, ω_0, and P.

 c.) (10 pts.) Find t_f, the time it takes for the cylinder to come to rest in terms of some or all of m, R, h, ℓ, d, μ, ω_0, and P.

 d.) (5 pts.) Find \vec{F}_O, the reaction of the hinge on the cylinder at O in terms of some or all of m, R, h, ℓ, d, μ, ω_0, P, i, and j.
1. a) \(\mathbf{t} = 1 \text{ sec} \Rightarrow \mathbf{a} = 2\pi \text{ rad} \).

b) \(\mathbf{\dot{w}} = \theta \mathbf{k} = \frac{4\pi}{\text{sec}^2} \mathbf{k} \) @ \(t = 1 \text{ sec} \)

\[\mathbf{z} = \mathbf{\dot{w}} = \frac{4\pi}{\text{sec}^2} \mathbf{k} = \text{const}. \]

c) \(\mathbf{a}_{G} = \alpha \times \mathbf{r}_{O} - \omega^2 \mathbf{r}_{O} \)

\[\mathbf{\dot{\mathbf{\omega}}} = \frac{\mathbf{\dot{\omega}}}{\text{sec}^2} = -\left(\frac{4\pi}{\text{sec}^2} \right)^2 \mathbf{k} \]

\[= \frac{2\pi}{\text{sec}^2} \mathbf{\dot{\omega}} - \frac{8\pi^3}{\text{sec}^2} \mathbf{k} \]

\[\mathbf{\dot{a}}_{G} = \frac{2\pi}{\text{sec}^2} \mathbf{\dot{\omega}} = \frac{8\pi^3}{\text{sec}^2} \mathbf{k} \]

d) \(\mathbf{\ddot{F}} = \mathbf{M}_{\ddot{a}} \)

\[\mathbf{F}_0 = \mathbf{M}_{\ddot{a}} = \frac{2\pi ml^2}{\text{sec}^2} \left(5 - 4\pi^2 \right) \]

e) \(\mathbf{\ddot{N}} = \mathbf{\ddot{T}}_0 \)

\[\mathbf{T}_0 \mathbf{k} = \frac{\mathbf{\ddot{N}}}{\text{sec}^2} \]

\[\mathbf{M}_0 \mathbf{k} = \frac{4\pi ml^2}{\text{sec}^2} \frac{4\pi}{\text{sec}^2} \mathbf{k} \]

\[\Rightarrow \mathbf{M}_0 = \frac{4\pi ml^2}{3} \text{ sec}^2 \]

f) \(\mathbf{\dot{P}}_{\text{in}} = \mathbf{\dot{M}}_0 \mathbf{\dot{w}} = \mathbf{M}_0 \mathbf{k} \cdot \mathbf{\dot{w}} \mathbf{k} = \mathbf{M}_0 \mathbf{\dot{w}} \)

\[\mathbf{\dot{P}}_{\text{in}} = \frac{4\pi ml^2}{3} \text{ sec}^2 \left(\frac{4\pi}{\text{sec}^2} \right) = \frac{16\pi^3 ml^2}{3} \text{ sec}^3 \]
(b) \[I_{zz} = \left(I_{zz}^0 \right)_1 + \left(I_{zz}^0 \right)_3 \]

\[I_{zz}^0 = \frac{2}{3} M R^2 \]

\[I_{zz} = 2M \left(\frac{2}{3} R^2 + 2^2 \right) \]

(c) For dumbbell, AMBo

For small mass, LMB

\[\sum M_0 \frac{\hat{a}}{u} = \hat{b}_0 \]

\[\overrightarrow{F}_{16} \times (-Mg \hat{j}) + \overrightarrow{F}_{16} \times (-Mg \hat{j}) + \overrightarrow{P}_{16} \times -T \hat{i} = \sum M_0 \frac{\hat{a}}{u} \]

\[\{ Mg \hat{e} - Mg \hat{e} \cos \theta \hat{k} - Ta \hat{k} \} \hat{k} = 2M \left(\frac{2}{3} R^2 + 2^2 \right) a \hat{k} \]

\[\{ 2 \cdot \hat{k} \} \hat{k} = -Ta = 2M \left(\frac{2}{3} R^2 + 2^2 \right) \alpha \]

LMB

\[\sum \hat{F} = m \sum \hat{a} = mab \]

\[\{ \hat{F} + \hat{T} - Mg \hat{j} \} \hat{j} = mab \hat{3} \hat{j} \Rightarrow \hat{T} - Mg = mab \]

Need 1 more equation to solve

2 equations, 3 unknowns T, d, ab
kinematic constraint \[\alpha_0 = \frac{d\alpha}{dt} \] (iii)

acceleration of mass

\[T = m(g + \alpha_0) \] (iv) \[\alpha = \frac{g\alpha_0}{a} \] (v)

Substitute (iv), (v) into (i)

\[-m(g + \alpha_0): \alpha = \frac{z \alpha_0}{\gamma} \left(\frac{3}{5} \frac{R^2 + \ell^2}{a^2} \right) \]

Solve for \(\alpha_0 \):

\[\alpha_0 = \frac{-g}{\left(1 + \frac{2M}{m} \left(\frac{3}{5} \frac{R^2 + \ell^2}{a^2} \right) \right)} \]
b.) \[\text{AMB}_q \ (\text{brake}) \ \Sigma \ T = M_v = \frac{\ddot{v}}{\dot{\theta}} \ \vec{Q} \ (M=0) \]
\[\{N(\ddot{d}+uN) - \dot{P}L\} \ \vec{k} = \vec{0} \]
\[\{3\} \ \vec{k} \Rightarrow N = \frac{P\dot{L}}{d+uN} \]

\[\text{AMB}_0 \ (\text{cylinder}) \ \Sigma \ T = M_v = \frac{\ddot{v}}{\dot{\theta}} \]
\[\{\text{UNR} \vec{k} \ i \times \dot{\vec{k}} \}
\[\text{mr}\vec{R}\vec{k} \text{ for disk} \]
\[\{3\} \ \vec{k} \Rightarrow a = \frac{2uN}{MR} \]
\[\theta = 2 \frac{uP L}{mR(d + uh)} \]

Subst. \(\theta \rightarrow \theta' \)

Ans. \(\theta = \text{const.} \)

b) \(\alpha = \frac{d\omega}{dt} = \frac{2uPL}{mR(c + uh)} \)

\[\Rightarrow \int_{\omega(0)}^{\omega} d\omega = \int_{0}^{t} \frac{2uPL}{mR(c + uh)} dt \]

\[\Rightarrow \omega - \omega(0) = \frac{2uPL}{mR(c + uh)} t \]

\[\omega(t) = -\omega(0) + \frac{2uPL}{mR(c + uh)} t \]

When cylinder comes to rest at \(t = t_f \)

\(\omega(t_f) = 0 \Rightarrow \)

\[0 = -\omega(0) + \frac{2uPL}{mR(c + uh)} t_f \]

\[\Rightarrow t_f = \frac{m\omega(0)R(c + uh)}{2uPL} \]

c) **LMB (cylinder)**

\[\bar{F}_0 - uN\vec{e} - N\vec{S} = m\ddot{\theta}_0 \]

\[\Rightarrow \bar{F}_0 = \bar{N}(\vec{u}\vec{e} + \vec{S}) \]

\[\bar{F}_0 = \frac{PL}{c + uh}(\vec{u}\vec{e} + \vec{S}) \]