Math 20 Chapter 11 Notes
Spring 2011

Part I. Probability Density Functions (pdfs) and Cumulative Distribution Functions (CDFs)

1. The probability density function for the score on a fitness test is given by
 \[f(x) = \frac{x^3}{5000} (10-x), \quad 0 \leq x \leq 10 \] points

 \[\int_0^2 \frac{x^3}{5000} - \frac{x^4}{5000} \, dx = \frac{1}{2000} x^4 - \frac{1}{2500} x^5 \bigg|_0^2 = 0 \]

 a. Find the probability that Jill scores 2 or less on the fitness test.
 \[P(X \leq 2) = .00672 \]

 b. Find the probability that Linda scores 3 or less on the fitness test.
 \[P(X \leq 3) = .03078 \]

 c. Find the probability Jean scores between 4 and 6 on the fitness test.
 \[P(4 \leq X \leq 6) = \int_4^6 \frac{x^3}{5000} - \frac{x^4}{5000} \, dx = \frac{1}{2000} x^4 - \frac{1}{2500} x^5 \bigg|_4^6 = 0.24992 \]

 d. Find the probability Nancy scores 7 or higher on the fitness test.
 \[P(X \geq 7) = 1 - P(X < 7) = 1 - F(7) = .47178 \]

2. Find the Cumulative Distribution Function for pdf given in #1.

 \[\int_0^x \frac{t^3}{5000} - \frac{t^4}{5000} \, dt = \frac{1}{2000} t^4 - \frac{1}{25000} t^5 \bigg|_0^x = .24992 \]

 a. Find the probability that Jill scores 2 or less on the fitness test.
 \[P(X \leq 2) = F(2) = .00672 \]

 b. Find the probability that Linda scores 3 or less on the fitness test.
 \[P(X \leq 3) = F(3) = .03078 \]

 c. Find the probability Jean scores between 4 and 6 on the fitness test.
 \[P(4 \leq X \leq 6) = F(6) - F(4) = .24992 \]

 d. Find the probability Nancy scores 7 or higher on the fitness test.
 \[P(X \geq 7) = 1 - P(X < 7) = 1 - F(7) = .47178 \]
3. The probability density function for the height of a mature Nagle Oak tree is given by

\[f(x) = \frac{1}{9} x - \frac{1}{18}, \quad 2 \leq x \leq 5 \text{ feet} \]

\[\text{r.v. } x = \text{tree height} \]

CDF: \[F(x) = \int_{a}^{x} \frac{1}{9} t - \frac{1}{18} \, dt = \frac{1}{18} t^2 - \frac{1}{18} t \bigg|_{2}^{x} \]

\[= \frac{1}{18} x^2 - \frac{1}{18} (x) - \left(\frac{1}{18} (2)^2 - \frac{1}{18} (2) \right) \]

\[F(x) = \frac{1}{18} x^2 - \frac{1}{18} x - \frac{2}{18} \]

\[[2, 5] \]

a. Find the Cumulative Density Function for the height of the tree.

\[F(x) = \frac{1}{18} x^2 - \frac{1}{18} x - \frac{2}{18} \quad [2, 5] \]

b. Find the probability the tree is 4 feet or less at maturity.

\[P(x \leq 4) = F(4) = \frac{1}{18} (4)^2 - \frac{1}{18} (4) - \frac{2}{18} = \frac{16}{18} - \frac{4}{18} - \frac{2}{18} = \frac{10}{18} = \frac{5}{9} \]

No integration for prob. \(\rightarrow \) done when finding \(F(x) \), CDF

4. The pdf for the number of feet between birds' nests at the Parpart Wildlife Refuge is given by

\[f(x) = 2xe^{-x^2}, \quad x \geq 0 \text{ feet} \]

\[\text{r.v. } x = \text{feet between nests} \]

\[\int_{2}^{5} 2xe^{-x^2} \, dx \]

\[u = -x^2 \]

\[du = -2x \, dx \]

\[-dx = 2 \, dx \]

\[= -x \left. \bigg|_{2}^{5} \right. \]

\[\int_{2}^{5} e^{-u} \, du = -e^{-u} \bigg|_{2}^{5} = -e^{-5} + 1 = \frac{1}{e^5} \]

Part II. Expected Value, Variance, Standard Deviation

\[\begin{array}{c|c|c|c|c|c|c}
X & 0 & 1 & 2 & 3 & 4 & 5 \\
P(x) & 0.2 & 0.4 & 0.1 & 0.05 & 0.15 & 0.1 \\
\end{array} \]

\[\Rightarrow \text{Expected Value} = \mathbb{E}(X) = \sum x \cdot P(x) \]

\[= 1.85 \]

\[\sigma^2 = \text{Var}(X) = \sum (x - \mu)^2 \cdot P(x) \]

\[= \text{St. dev.} = \sigma = \sqrt{\text{Var}(X)} \]
2. Continuous Case

Given pdf \(f(x) \) on \([A, B]\), then the Expected Value is \(E(x) = \mu = \int_A^B x f(x) \, dx \).

\[\text{Integral over entire interval of } x = f(x) \]

Variance is \(V(x) = \sigma^2 = \int_A^B (x-\mu)^2 f(x) \, dx = \int_A^B x^2 f(x) \, dx - [E(x)]^2 \) and

\[\text{Standard deviation is } \sigma = \sqrt{V(x)} \]

Median = \(m \) such that \(\int_A^m f(x) \, dx = \frac{1}{2} \)

\[\text{middle} \]

2. The length of a petal for the Virtue Daisy is between 1 and 4 inches, given by the pdf

\[f(x) = \frac{1}{2\sqrt{x}}, \quad 1 \leq x \leq 4 \text{ inches} \]

\[\text{average} \]

a. Find the expected length of a petal for the Virtue Daisy.

\[E(x) = \int_1^4 x \left(\frac{1}{2\sqrt{x}} \right) \, dx = \int_1^4 \frac{1}{2} x^{1/2} \, dx = \frac{1}{2} \left[\frac{2}{3} x^{3/2} \right]_1^4 = \frac{1}{3} \left(4^{3/2} - 1^{3/2} \right) = \frac{1}{3} (4) - \frac{1}{3} (1) = 1 \frac{2}{3} \]

b. Find the variance and standard deviation for the length of the petal for the Virtue Daisy.

\[V(x) = \left(\int_1^4 x^2 \left(\frac{1}{2\sqrt{x}} \right) \, dx \right) - \left(\frac{1}{3} \right)^2 = \frac{32}{3} - \frac{16}{9} = \frac{32}{3} - \frac{16}{9} = \frac{32}{3} - \frac{16}{9} = \frac{3}{2} \approx 1.5 \]

\[\text{middle} \]

c. Find the probability a petal is longer than 1 standard deviation above the mean.

\[P(X > 3.20) = \int_{3.2}^4 x^{-1/2} \, dx = \left. \frac{1}{\sqrt{2}} \right|_3.2 = 3.2 \]

\[\text{middle} \]

d. Find the median petal length.

\[\text{median} = m \Rightarrow \int_1^m \frac{1}{2} x^{-1/2} \, dx = \frac{5}{2} \]

\[\sqrt{m} - 1 = \sqrt{m} - 1 \]

\[m = (1.5) \]

\[m = (1.5)^2 = 2.25 \]
3. The length of time waiting in a supermarket express lane is a pdf

\[f(x) = \frac{11}{10(x+1)^2}, \quad 0 \leq x \leq 10 \text{ minutes} \]

Note: this is a really challenging problem! Much harder than I would expect on a test.

a. Find the probability the wait is 4 minutes or less.

\[
\begin{align*}
\int_0^4 \frac{11}{10(x+1)^2} \, dx &= \frac{-11}{10} \left. \frac{1}{(x+1)} \right|_0^4 \\
&= \frac{-11}{10 (4+1)} - \frac{-11}{10 (1+0)} \\
&= -\frac{11}{50} + \frac{11}{10} = \frac{-11 + 55}{50} = \frac{44}{50} = \frac{4.4}{50}
\end{align*}
\]

b. Find the expected wait time.

\[
\begin{align*}
E(x) &= \int_0^{10} x \left(\frac{11}{10} (x+1)^{-2} \right) \, dx \\
&= \int_0^{10} \frac{11}{10} x (x+1)^{-2} \, dx \\
&= \frac{11}{10} \left. \frac{1}{(x+1)} + \frac{11}{10} \ln(x+1) \right|_0^{10} \\
&= -\frac{11}{10} (10! + \frac{11}{10} \ln(11) - (\frac{-11}{10} \ln(1) + \frac{11}{10} \ln(11)) \\
&= \frac{11}{10} (10! - \frac{11}{10} \ln(11)) \\
&= 4.4
\end{align*}
\]

c. Find the probability the wait time is less than or equal to the mean.

\[
P(x \leq 1.64) = \int_0^{1.64} \frac{11}{10 (x+1)^2} \, dx = \frac{-11}{10 (x+1)^2} \bigg|_0^{1.64} \\
= \frac{-11}{10 (2.64)} + \frac{11}{10 (1)} = 0.6833 = \frac{41}{60}
\]

d. Find the variance and standard deviation for the wait time.

\[
\begin{align*}
\text{Var}(x) &= \int_0^{10} x^2 \left(\frac{11}{10} (x+1)^{-2} \right) \, dx - \left(\frac{1.64}{10} \right)^2 \\
&= \int_0^{10} \frac{11}{10} x^2 (x+1)^{-2} \, dx \\
&= \frac{11}{10} \left. \frac{1}{(x+1)} + \frac{22}{10} x \ln(x+1) + \frac{22}{10} \left(-\ln(x+1) \right) \right|_0^{10} \\
&= \frac{11}{10} (10! + \frac{22}{10} \ln(11) - \frac{22}{10} + \frac{22}{10} \ln(11)) \\
&= 6.72 - (1.64)^2 = \frac{4.0304}{10} = 0.40304
\end{align*}
\]

\[
\text{St. Dev} = \sqrt{4.0304} = 2.0071
\]

e. Find the probability the wait time is within 1 standard deviation of the mean.

\[
P(1.64 - 1 < x < 1.64 + 1) = P(0.64 \leq x \leq 2.64) = 12 - \frac{22}{10} \ln(11)
\]

\[
\frac{22}{10} \ln(11) \quad \text{solve w/ IBP you don't know this}
\]