The rate of change of a quantity is proportional to the amount present at time \(t \) is represented by the differential equation \(\frac{dA}{dt} = kA \). The solution of this differential equation is \(A = Me^{kt} \). The constant \(k \) is called the growth constant, while \(M \) is the amount present at \(t = 0 \), often called the initial condition. A positive value of \(k \) indicates growth and a negative \(k \) indicates decay.

1. Sean deposits $3000 in an account that increases at a rate of 4% (compound continuously). Find the value of the deposit after 8 years.

 \[
 \frac{dA}{dt} = 0.04A \\
 A = Me^{0.04t} \\
 A(0) = 3000 \\
 A(8) = 3000e^{0.04(8)} = 4131.38
 \]

 Find the value of the deposit after 8 years.

2. Sales at Augieburger's Grill are increasing at a rate proportional to the amount of sales, with a growth rate of 8%. How many years will it take for sales to triple at Augieburger's?

 \[
 \frac{dS}{dt} = 0.08S \\
 S(t) = Me^{0.08t} \\
 M = \text{initial sales} \to 100 \\
 \text{triple sales} \to 3M \to 300
 \]

 Find \(t \) when \(S(t) = 3M \)

 \[
 \ln(3) = 0.08t \\
 t = \frac{\ln(3)}{0.08} = 13.73 \text{ yrs.}
 \]
3. Sales (in thousands) of a certain product are declining at a rate proportional to the amount of sales, with a decay rate of 10% per year. How much time will pass before sales are half of their original value?

\[K = -0.10 \]

\[\frac{dS}{dt} = -0.10S \]

\[S = Me^{-0.10t} \]

\[S(t) = Me^{-0.10t} \]

\[\frac{1}{2}M = \frac{Me^{-0.10t}}{M} \]

\[ln(0.5) = -0.10t \]

\[\frac{ln(0.5)}{-0.10} = t \]

\[t = 6.93 \text{ yrs} \]

4. Profits at Garrett’s Galleria are predicted to increase from 2 (million) in 2010 to 6 (million) in 2012.

a. Assuming unlimited growth and the growth model \(\frac{dy}{dt} = ky \) fits this situation, find the value of the growth constant \(k \).

b. What is the profit after 4 years?

c. When will Garrett have a profit of 20 (million)?

\[2 \text{ (million) in 2010} \quad (t=0) \]

\[6 \text{ (million) in 2012} \quad (t=2) \quad \Rightarrow \quad \text{to find } k \]

\[y(t) = Me^{kt} \]

\[y(t) = 2e^{kt} \]

\[6 = 2e^{k(2)} \]

\[\ln(3) = e^{k(2)} \]

\[\ln(3) = \frac{2k}{2} \]

\[k = \frac{\ln(3)}{2} \approx 0.5493 \]

\[0.5493t \]

\[y(t) = 2e^{0.5493t} \]

\[y(4) = 2e^{0.5493 \times 4} \]

\[y(4) = 17,999.5 \text{ million} \]

\[(\text{not 17,999,500}) \]

\[\text{(or 18,000,000)} \]

(\[\text{Find } y \text{ when } t=4 \]

\[y(t) = 2e^{0.5493t} \]

\[y(4) = 17,999.5 \text{ million} \]

\[\text{18 million} \]

\[\text{(or 18,000,000)} \]

\[\text{Find } t \text{ when } y(t) = 20 \]

\[ln(10) = ln(e^{0.5493t}) \]

\[20 = \frac{2e^{0.5493t}}{2} \]

\[t = \frac{ln(10)}{0.5493} \approx 4.19 \text{ yrs} \]