A LEbesgue measurable SET THAT IS NOT BOREL

SAM SCHIAVONE

Tuesday, 16 October 2012

1. Outline

(1) Ternary Expansions
(2) The Cantor Set
(3) The Cantor Ternary Function (a.k.a. The Devil’s Staircase Function)
(4) Properties of the Cantor Ternary Function
 • Continuous
 • Monotone
 • Maps \(C \) onto \([0, 1]\)
 • Constant on each interval in complement of Cantor set \(C \)
(5) Brief review of Vitali set
(6) Problem #28, pp. 71 - 72, [Roy]

2. Ternary Expansions

We’re quite comfortable using decimal expansions for real numbers, i.e., writing

\[
x = \sum_{n=-\infty}^{N} d_n 10^n = d_N \cdot 10^N + \cdots + d_1 \cdot 10 + d_0 + \frac{d_{-1}}{10} + \cdots
\]

with \(d_n \in \{0, 1, \ldots, 9\} \). But the choice of 10 as our base is quite arbitrary (mathematically, not evolutionarily). In this construction we will be using ternary expansions, that is, writing

\[
x = \sum_{n=-\infty}^{N} t_n 3^n = t_N \cdot 3^N + \cdots + t_1 \cdot 3 + t_0 + \frac{t_{-1}}{3} + \cdots
\]

with \(a_n \in \{0, 1, 2\} \). For instance,

\[
197.2 = 1 \cdot 10^2 + 9 \cdot 10 + 7 + \frac{2}{10}
= 2 \cdot 3^4 + 1 \cdot 3^3 + 0 \cdot 3^2 + 2 \cdot 3 + 2 + \frac{1}{3} + \frac{2}{3^2} + \frac{1}{3^3} + \cdots
= 21022.121\ldots3.
\]

In defining the Cantor ternary function, we will be using ternary expansions for \(x \in [0, 1] \), which can be expressed as

\[
x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}.
\]

(How can you express 1 in this way?)
3. The Cantor Set

Recall that the Cantor set C can be constructed by starting with the interval $[0, 1]$ and iteratively removing the middle third of the remaining intervals. (Draw picture.) At each stage we are removing intervals of the form $\left(\frac{3k - 2}{3^m}, \frac{3k - 1}{3^m} \right)$ with $k \in \{1, \ldots, 3^m - 1\}$.

It can be shown that the Cantor set is also the set of all numbers in $[0, 1]$ that have ternary expansions with no 1s. (Discuss how at n^{th} stage numbers in left, middle and right thirds have 0, 1, and 2 as the n^{th} digit of their ternary expansions, respectively. Use picture.)

4. The Cantor Ternary Function

We define a function $f : [0, 1] \rightarrow [0, 1]$ as follows. Given $x \in [0, 1]$ with $x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}$, let N be the smallest n such that $a_n = 1$. If no such n exists, let $N = \infty$. Define

\[b_n = \begin{cases}
\frac{a_n}{2} & \text{if } n < N \\
1 & \text{if } n = N
\end{cases} \]

Define f by

\[f(x) = f \left(\sum_{n=1}^{\infty} \frac{a_n}{3^n} \right) = \sum_{n=1}^{N} \frac{b_n}{2^n}. \]

Note that we should check that f is well-defined since numbers of the form $\frac{a}{3^N}$ have two ternary expansions. Observe that $f(x) = \sum_{n=1}^{N} \frac{b_n}{2^n}$ is a binary expansion of a number in $[0, 1]$. (Show Mathematica plot.)

Lemma. f is continuous.

Proof. Fix $\epsilon > 0$ and $c \in [0, 1]$. Idea: make δ small enough so that the ternary expansions of x and c agree sufficiently far. Choose N such that $2^N > 1/\epsilon$. Let $\delta = \frac{1}{3^{N+1}}$. Given x with $|x - c| < \delta$, then x and c have ternary expansions (x_n) and (c_n) such that $x_n = c_n$ for all $n \leq N$. Let (y_n) and (d_n) be the binary expansions of $f(x)$ and $f(c)$, i.e.,

\[f(x) = \sum_{n=1}^{\infty} \frac{y_n}{2^n}, \quad f(c) = \sum_{n=1}^{\infty} \frac{d_n}{2^n}. \]

Then $y_n = d_n$ for all $n \leq N$. Then

\[|f(x) - f(c)| = \left| \sum_{n=1}^{\infty} \frac{y_n}{2^n} - \sum_{n=1}^{\infty} \frac{d_n}{2^n} \right| = \left| \sum_{n=1}^{N} \frac{y_n - d_n}{2^n} + \sum_{n=N+1}^{\infty} \frac{y_n - d_n}{2^n} \right| \leq \frac{1}{2^N} < \epsilon. \]

\[\square \]
Lemma. f is monotone.

Proof. Idea: If $x < y$, then their ternary expansions (x_n) and (y_n) must differ at some point N and at that point $x_N < y_N$. □

Lemma. f is constant on each interval in $[0, 1] \setminus C$.

Proof. Suppose $x, y \in \left(\frac{3k-2}{3^M}, \frac{3k-1}{3^M}\right)$ with ternary expansions (x_n) and (y_n). Without loss of generality, assume that M is the smallest positive integer such that $x_M = 1 = y_M$. Then $x_n = y_n$ for all $n < M$, so

$$f(x) = \sum_{n=1}^{M-1} \frac{(1/2)x_n}{2^n} + \frac{1}{2^M} = \sum_{n=1}^{M-1} \frac{(1/2)y_n}{2^n} + \frac{1}{2^M} = f(y).$$

□

Lemma. f maps C onto $[0, 1]$.

Proof. Suppose $y \in [0, 1]$ has binary expansion (y_n). For each n, let $x_n = 2y_n$. Then $x_n = 0$ or 2 for all n, so $x := \sum_{n=1}^{\infty} \frac{x_n}{3^n} \in C$. Since

$$f(x) = \sum_{n=1}^{\infty} \frac{(1/2)x_n}{2^n} = \sum_{n=1}^{\infty} \frac{y_n}{2^n} = y$$

then f maps C onto $[0, 1]$. □

5. Facts About Nonmeasurable Sets

Recall that we constructed the Vitali set \mathcal{V} by choosing representatives for the equivalence classes of the equivalence relation given by $x \sim y$ if and only if $x - y \in \mathbb{Q}$ (i.e., coset representatives for the quotient group \mathbb{R}/\mathbb{Q}). We showed that these representatives could be chosen to all lie in $[0, 1]$, but also noted that they could be chosen to lie in any interval $[0, 1/10^n]$ by choosing a suitable decimal approximation. We proved that \mathcal{V} was nonmeasurable by letting (q_n) be an enumeration of the rational numbers in $[0, 1]$ and defining $\mathcal{V}_n = \mathcal{V} + q_n = \{v + q_n : v \in \mathcal{V}\}$. We will use this construction once again in the following propositions.

Proposition. If E is measurable and $E \subseteq \mathcal{V}$, then $\lambda(E) = 0$.

Proof. As in the construction of \mathcal{V}, let (q_i) be an enumeration of the rational numbers in $[-1, 1]$. Letting $E_i = E + q_i$ for each i, then (E_i) is a disjoint sequence and $\lambda(E_i) = \lambda(E)$ for all i. (This follows by the same reasoning used in the construction of \mathcal{V}.) Since $E \subseteq \mathcal{V} \subseteq [0, 1]$, then $\bigcup_{i \in \mathbb{Z}_{>0}} E_i \subseteq [-1, 2]$. Then

$$3 \geq \lambda[-1, 2] \geq \lambda \left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \lambda(E_i) = \sum_{i=1}^{\infty} \lambda(E) = \lambda(E) \sum_{i=1}^{\infty} 1 = \left\{\begin{array}{ll} 0 & \text{if } \lambda(E) = 0 \\ \infty & \text{if } \lambda(E) > 0. \end{array}\right.$$

Since $\sum_{i=1}^{\infty} \lambda(E) \leq 3$, then $\lambda(E) = 0$. □
Proposition. If $A \subseteq \mathbb{R}$ with $\lambda^*(A) > 0$, then there exists $E \subseteq A$ with E nonmeasurable.

Proof. Without loss of generality, take $A \subseteq [0,1)$. (Since $\lambda^*(A) > 0$, then it must the case that $\lambda^*(A \cap [n,n+1)) > 0$ for some n. Let $B := (A \cap [n,n+1)) - n$. Since Lebesgue measure is translation-invariant, then $\lambda^*(B) > 0$ and $B \subseteq [0,1)$.)

For each i, let $E_i = A \cap \mathcal{V}_i$ where \mathcal{V}_i is, as before, the translate of \mathcal{V} by q_i. For contradiction, suppose that E_i is measurable for all i. Then $E_i \subseteq \mathcal{V}_i = \mathcal{V} + q_i$. Since \mathcal{V} is measurable, then $\lambda(E_i) = \lambda(\mathcal{V}) = 0$ by the previous proposition. Thus $\lambda(E_i) = \lambda(\mathcal{V}) = 0$.

Since $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} (A \cap \mathcal{V}_i) = A \cap \left(\bigcup_{i=1}^{\infty} \mathcal{V}_i \right) \supseteq A \cap [0,1) = A$ then

$$0 < \lambda^*(A) \leq \lambda^* \left(\bigcup_{i=1}^{\infty} E_i \right) \leq \sum_{i=1}^{\infty} \lambda^*(E_i) = 0,$$

which is a contradiction. Thus E_i is nonmeasurable for some i, and $E_i \subseteq A$. □

6. Constructing A Measurable Non-Borel Set

We follow the construction indicated in Exercise 3.28, pp. 71-72 of [Roy]. Let f be the Cantor ternary function as defined above, and let $g(x) = f(x) + x$.

Lemma. $g : [0,1] \to [0,2]$ is a homeomorphism, i.e., g is a continuous bijection with a continuous inverse.

Proof. • One-to-one: g is increasing
 • Continuous: Since f is continuous, then g is a sum of continuous functions, hence continuous.
 • Onto: Since $g(0) = 0$ and $g(1) = 2$ and g is continuous, then g attains every value between 0 and 2 by the Intermediate Value Theorem.
 • Continuous Inverse: Let $h = g^{-1}$. Suppose $U \subseteq [0,1]$ is open. Then $[0,1] \setminus U$ is closed and bounded, hence compact. Since g is continuous, then $g([0,1] \setminus U)$ is compact. Now $g([0,1] \setminus U) = h^{-1}([0,1] \setminus U) = [0,2] \setminus h^{-1}(U)$, so $[0,2] \setminus h^{-1}(U)$ is compact, hence closed and bounded. Then $h^{-1}(U) \subseteq [0,2]$ is open, hence h is continuous. Therefore g is a homeomorphism.

Lemma. $g(\mathcal{C})$ has measure 1.

Proof. Recall that f is constant on any interval in $[0,1] \setminus \mathcal{C}$. Thus for any interval $(a,b) \subseteq [0,1] \setminus \mathcal{C}$, $\lambda(g(a), g(b)) = g(b) - g(a) = f(b) + b - f(a) - a = b - a$. 4
Let $\{I_{n,k}\}_{k=1}^{2^{n-1}}$ denote the collection of intervals removed at stage n in the construction of C. Then

$$\lambda([0, 2] \setminus C) = \lambda(g([0, 1] \setminus C)) = \lambda\left(g \left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n-1}} I_{n,k} \right) \right) = \lambda\left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n-1}} g(I_{n,k}) \right)$$

$$= \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} \lambda(g(I_{n,k})) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} \lambda(I_{n,k}) = 1$$

since the total measure of intervals removed is 1. Since $[0, 2] = g(C) \cup ([0, 2] \setminus g(C))$, then

$$2 = \lambda([0, 2]) = \lambda(g(C)) + \lambda([0, 2] \setminus g(C)) = \lambda(g(C)) + 1,$$

hence $\lambda(g(C)) = 1$. □

Since $\lambda(g(C)) > 0$, then there exists a nonmeasurable $E \subseteq g(C)$. Let $A = g^{-1}(E)$. Since $A \subseteq C$, then $\lambda^*(A) \leq \lambda^*(C) = 0$. Thus A has outer measure zero, hence is measurable, but $g(A) = E$ is nonmeasurable.

Since $g^{-1} = h$ is continuous, hence measurable. We claim that A is not a Borel set. For contradiction, suppose A is Borel. Since h is measurable, then $h^{-1}(A) = g(A) = E$ is measurable, which is a contradiction. Therefore A is not a Borel set.

References