2. Mark each statement True or False. Justify each answer.
 (a) Some unbounded sets are compact.
 (b) If \(S \) is a compact subset of \(\mathbb{R} \), then there is at least one point in \(\mathbb{R} \) that is an accumulation point of \(S \).
 (c) If \(S \) is compact and \(x \) is an accumulation point of \(S \), then \(x \in S \).
 (d) If \(S \) is unbounded, then \(S \) has at least one accumulation point.
 (e) Let \(\mathcal{F} = \{ A_i : i \in \mathbb{N} \} \) and suppose that the intersection of any finite subfamily of \(\mathcal{F} \) is nonempty. If \(\bigcap \mathcal{F} = \emptyset \), then for some \(k \in \mathbb{N} \), \(A_k \) is not compact.

3. Show that each subset of \(\mathbb{R} \) is not compact by describing an open cover for it that has no finite subcover.
 (a) \([1, 3)\]
 (b) \([1, 2) \cup (3, 4]\)
 (c) \(\mathbb{N}\)
 (d) \(\{1/n : n \in \mathbb{N}\}\)
 (e) \(\{x \in \mathbb{Q} : 0 \leq x \leq 2\}\)

4. Prove that the intersection of any collection of compact sets is compact.

5. (a) If \(S_1 \) and \(S_2 \) are compact subsets of \(\mathbb{R} \), prove that \(S_1 \cup S_2 \) is compact. \(\checkmark\)
 (b) Find an infinite collection \(\{S_n : n \in \mathbb{N}\} \) of compact sets in \(\mathbb{R} \) such that \(\bigcup_{n=1}^{\infty} S_n \) is not compact.

6. Show that compactness is necessary in Corollary 3.5.8. That is, find a family of intervals \(\{A_n : n \in \mathbb{N}\} \) with \(A_{n+1} \subseteq A_n \) for all \(n \), \(\bigcap_{n=1}^{\infty} A_n = \emptyset \), and such that
 (a) The sets \(A_n \) are all closed.
 (b) The sets \(A_n \) are all bounded.

7. (a) Let \(\mathcal{F} \) be a collection of disjoint open subsets of \(\mathbb{R} \). Prove that \(\mathcal{F} \) is countable. \(\star\)
 (b) Find an example of a collection of disjoint closed subsets of \(\mathbb{R} \) that is not countable.

*8. If \(S \) is a compact subset of \(\mathbb{R} \) and \(T \) is a closed subset of \(S \), then \(T \) is compact.
 (a) Prove this using the definition of compactness.
 (b) Prove this using the Heine–Borel theorem.

9. Find an uncountable open cover \(\mathcal{F} \) of \(\mathbb{R} \) such that \(\mathcal{F} \) has no finite subcover. Does \(\mathcal{F} \) contain a countable subcover?

10. Let \(\mathcal{G} = \{N(p;r) : p \in \mathbb{Q} \text{ and } r > 0\} \).
 (a) Prove that \(\mathcal{G} \) is countable.