ME 012 Engineering Dynamics

Lecture 20

Absolute Motion Analysis and Relative Motion Analysis: Velocity
(Chapter 16, Sections 4 and 5)

Thursday,
Apr. 04, 2013
Chapter 16: Planar Kinematics of a Rigid Body

- 16.1 Rigid-Body Motion
- 16.2 Translation
- 16.3 Rotation About a Fixed Axis
- 16.4 Absolute Motion Analysis
- 16.5 Relative Motion Analysis: Velocity
- 16.6 Instantaneous Center of Zero Velocity
- 16.7 Relative Motion Analysis: Acceleration

Chapter 17: Planar Kinematics of a Rigid Body: Force and Acceleration

- 17.1 Moment of Inertia
- 17.2 Planar Kinetic Equations of Motion
- 17.3 Equations of Motion: Translation
- 17.4 Equations of Motion: Rotation About a Fixed Axis
- 17.5 Equations of Motion: General Plane Motion
TODAY’S OBJECTIVE

1. Determine the velocity and acceleration of a rigid body undergoing **general plane motion** using an absolute motion analysis.
2. Describe the velocity of a rigid body in terms of translation and rotation components.
3. Perform a relative-motion velocity analysis of a point on the body.

In-Class Activities:
- Applications
- General Plane Motion
- Translation and Rotation Components of Velocity
- Relative Velocity Analysis
- Problem Solving
APPLICATIONS

The position of the piston, x, can be defined as a function of the angular position of the crank, θ. By differentiating x with respect to time, the velocity of the piston can be related to the angular velocity, ω, of the crank.

The stroke of the piston is defined as the total distance moved by the piston as the crank angle varies from 0 to 180°. How does the length of crank AB affect the stroke?

The rolling of a cylinder is an example of general plane motion.

During this motion, the cylinder rotates clockwise while it translates to the right.

The position of the center, G, is related to the angular position, θ, by, $s_G = r\theta$, if the cylinder rolls without slipping.

You relate the translational velocity of G and the angular velocity of the cylinder.
16.4 Absolute Motion Analysis

Absolute motion analysis (also called the parametric method) is used to study planar motion.

- Recall, a body subjected to *general plane motion* undergoes a simultaneous **translation** and **rotation**
- This method relates the position of a point, \(P \), on a rigid body undergoing rectilinear motion to the angular position, \(\theta \) (parameter), of a line contained in the body.
- Often this line is a link in a machine.
- Once a relationship in the form of \(s_P = f(\theta) \) is established, the velocity and acceleration of point \(P \) are obtained in terms of the angular velocity, \(\omega \), and angular acceleration, \(\alpha \), of the rigid body by taking the **first and second time derivatives** of the position function.

\[
\begin{align*}
 s_P &= f(r, \theta) \\
 v_P &= \frac{d[f(\theta)]}{dt} = f(r, \theta, \omega) \\
 a_P &= \frac{d^2[f(\theta)]}{dt^2} = f(r, \theta, \omega, \alpha)
\end{align*}
\]

- Usually the **chain rule** must be used when taking the derivatives of the position coordinate equation.
Using trigonometry, a relation between the rotational motion of OA and rectilinear translation of rod R (measured from fixed point O):

\[x = 2r \cos \theta \]

Using the chain rule:

\[\frac{dx}{dt} = -2r (\sin \theta) \frac{d\theta}{dt} \quad \Rightarrow \quad v = -2r \omega (\sin \theta) \]

\[\frac{dv}{dt} = -2r \left(\frac{d\omega}{dt} \right) (\sin \theta) - 2r \omega (\cos \theta) \frac{d\theta}{dt} \quad \Rightarrow \quad a = -2r [\alpha (\sin \theta) + \omega^2 (\cos \theta)] \]
16.5 Relative Motion Analysis: Velocity

When a body is subjected to general plane motion, it undergoes a combination of translation and rotation.

- The position vector \mathbf{r}_A specifies the location of “base point” A.
- This point generally has a known motion.
- The position vector of point B (\mathbf{r}_B) can be related to a selected “base-point” A via:

\[
\mathbf{r}_B = \mathbf{r}_A + \mathbf{r}_{B/A}
\]
When a body is subjected to general plane motion, it undergoes a combination of **translation** and **rotation**.

DISPLACEMENT

- During time duration dt, points A and B undergo displacements dr_A and dr_B.
- Allow base point A to translate to new origin.
- The solid body is rotated by $d\theta$.
- Due to this rotation, $dr_{B/A} = r_{B/A}d\theta$.
- The displacement of B is then:

$$dr_B = dr_A + dr_{B/A}$$

Due to translation and rotation

Due to translation of A

Due to rotation about A
16.5 Relative Motion Analysis: Velocity

The velocity at B is given as:

$$\frac{d\mathbf{r}_B}{dt} = \frac{d\mathbf{r}_A}{dt} + \frac{d\mathbf{r}_{B/A}}{dt}$$

OR

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A}$$

Since the body is taken as rotating about A,

$$\mathbf{v}_{B/A} = \frac{d\mathbf{r}_{B/A}}{dt} = \omega \times \mathbf{r}_{B/A}$$

Here ω will only have a \mathbf{k} component since the axis of rotation is perpendicular to the plane of translation.

$$\mathbf{v}_B = \mathbf{v}_A + \omega \times \mathbf{r}_{B/A}$$
16.5 Relative Motion Analysis: Velocity

When using the relative velocity equation, points A and B should generally be points on the body with a known motion. Often these points are pin connections in linkages.

Here both points A and B have circular motion since the disk and link BC move in circular paths. The directions of \mathbf{v}_A and \mathbf{v}_B are known since they are always tangent to the circular path of motion.

\[\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{B/A} \]
When a wheel rolls without slipping, point A is often selected to be at the point of contact with the ground. Since there is no slipping, point A has zero velocity.

Furthermore, point B at the center of the wheel moves along a horizontal path. Thus, \mathbf{v}_B has a known direction, e.g., parallel to the surface.
The **relative velocity equation** can be applied using either a Cartesian vector analysis or by writing scalar x and y component equations directly.

PROCEDURE FOR SCALAR ANALYSIS

1. Establish the fixed x-y coordinate directions and draw a **kinematic diagram** for the body. Then establish the magnitude and direction of the relative velocity vector $\mathbf{v}_{B/A}$.

2. Write the equation $\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A}$ and by using the kinematic diagram, underneath each term represent the vectors graphically by showing their **magnitudes and directions**.

3. Write the scalar equations from the x and y components of these graphical representations of the vectors. Solve for the unknowns.
PROCEDURE FOR VECTOR ANALYSIS

1. Establish the fixed x-y coordinate directions and draw the **kinematic diagram** of the body, showing the vectors \mathbf{v}_A, \mathbf{v}_B, $\mathbf{r}_{B/A}$ and ω. If the magnitudes are unknown, the sense of direction may be assumed.

2. Express the vectors in **Cartesian vector form** and substitute into $\mathbf{v}_B = \mathbf{v}_A + \omega \times \mathbf{r}_{B/A}$. Evaluate the cross product and equate respective i and j components to obtain **two** scalar equations.

3. If the solution yields a **negative** answer, the sense of direction of the vector is **opposite** to that assumed.
EXAMPLE 1

The bar of length $L = 5$ ft is confined to move along a vertical and inclined plane ($\phi = 30^\circ$). The velocity of the roller at A is $v_A = 6$ ft/s downward when $\theta = 45^\circ$. Determine the bar's angular velocity and the velocity of roller B at this instant.
EXAMPLE 2

A wheel ($r_B = 150$ mm) rotating with an angular velocity $\omega_B = 8$ rad/s is connected to collar A by a rigid rod ($r_A = 500$ mm). Determine the velocity of the collar A at the instant $\theta = 30^\circ$ and $\phi = 60^\circ$.
EXAMPLE 3

The pinion gear \((r = 0.3 \text{ ft})\) rolls on the gear racks. Rack \(B\) is moving to the right at speed \(v_B = 8 \text{ ft/s}\) and rack \(C\) is moving to the left at speed \(v_C = 4 \text{ ft/s}\). Determine the angular velocity of the pinion gear and the velocity of its center \(A\).
EXAMPLE 3: Solution