Lecture 7. Matrix formulation of orthogonal projections and Gram-Schmidt orthogonalization, QR decomposition, and its application to the least-squares fit problem.

1. Matrix formulation of orthogonal projections (see p. 235 of the book for an alternative approach)

Let \(S = \{ v_1, \ldots, v_q \} \) be an orthonormal set in a \(p \)-dimensional vector space \(W \) (we assume \(q < p \)). In Lecture 6 we showed that the projection of any \(v \in W \) on \(\operatorname{Sp}(S) \) is:

\[
P_S v = \alpha_1 v_1 + \ldots + \alpha_q v_q,
\]

\[\alpha_j = \frac{\langle v, v_j \rangle}{\langle v_j, v_j \rangle} \rightarrow 1.\]

Then:

\[
P_S v = v_1 \frac{\langle v, v_1 \rangle}{P_1 v} + \ldots + v_q \frac{\langle v, v_q \rangle}{P_q v}
\]

\[
= \frac{v_1 (v_1^T v)}{P_1 v} + \ldots + \frac{v_q (v_q^T v)}{P_q v}
\]

\[
= \frac{v_1 (v_1^T v)}{P_1 v} + \ldots + \frac{v_q (v_q^T v)}{P_q v}
\]

\[
= \left(\frac{v_1 (v_1^T v)}{P_1 v} + \ldots + \frac{v_q (v_q^T v)}{P_q v} \right)
\]

\[
= \left(\frac{v_1 v_1^T}{P_1 v} + \ldots + \frac{v_q v_q^T}{P_q v} \right)
\]

\[
= \frac{P_S v}{[v_1, \ldots, v_q][v_1^T, \ldots, v_q^T] v} = QQ^T v
\]
Thus, \(P_\Sigma \mathbf{v} = \frac{\mathbf{QQ}^T}{\mathbf{P}} \mathbf{v} \) \hspace{1cm} (3) \\

\(P = \text{projection matrix} \).

This is the matrix form of (1), (2).

Properties of \(\mathbf{Q} \) and \(\mathbf{P} \) (see p. 236):

\(\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_q \) \hspace{1cm} (4) \\
\(q \times p \rightarrow p \times q \)

\[
\begin{bmatrix}
\mathbf{v}_1^T \\
\mathbf{v}_2^T \\
\vdots \\
\mathbf{v}_q^T
\end{bmatrix}
\begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_q
\end{bmatrix} = \mathbf{I}_q \quad \text{since} \quad \mathbf{v}_j \perp \mathbf{v}_k, \ k \neq j, \quad \| \mathbf{v}_j \|^2 = 1.
\]

Note that \(\mathbf{QQ}^T \neq \mathbf{I}_p \) unless \(p=q \).

\(\mathbf{P}^2 = \mathbf{P} \quad \mathbf{P} \rightarrow \mathbf{I}_p \quad \mathbf{P} \) \hspace{1cm} (5)

\(\mathbf{P}^2 = \mathbf{Q} \left(\mathbf{Q}^T \mathbf{Q} \right) \mathbf{Q}^T = \mathbf{Q} \mathbf{Q}^T = \mathbf{P} \).

Meaning: projecting a projection doesn't change that projection:

\(\text{projections} \left(\text{projections} \mathbf{v} \right) = \text{projections} \mathbf{v} \).

\(10/6/08\)

2. **QR decomposition**.

We have found the matrix form of the projection operation. Let's now find the matrix form of the Gram-Schmidt orthogonalization.

Let's do it for a 3x3 matrix, it's similar for \(p \times q \).

So, let's orthogonalize the set \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \) via G-S:
1) \[u_1 = v_1, \text{ or } v_1 = u_1, \text{ or } \]
\[v_1 = \begin{bmatrix} u_1, u_2, u_3 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}. \quad (\star) \]

2) \[u_2 = v_2 - P \mathbf{v}_2 = v_2 - \alpha_{1,2} u_1 \]
\[\Rightarrow v_2 = \alpha_{1,2} u_1 + u_2. \]
\[\Rightarrow v_2 = \begin{bmatrix} u_1, u_2, u_3 \end{bmatrix} \begin{pmatrix} \alpha_{1,2} \\ 1 \\ 0 \end{pmatrix}. \quad (\star \star) \]

3) \[u_3 = v_3 - P \mathbf{v}_3 - P \mathbf{v}_3 = v_3 - \alpha_{1,3} u_1 - \alpha_{2,3} u_2 \]
\[\Rightarrow v_3 = \alpha_{1,3} u_1 + \alpha_{2,3} u_2 + u_3. \]
\[\Rightarrow v_3 = \begin{bmatrix} u_1, u_2, u_3 \end{bmatrix} \begin{pmatrix} \alpha_{1,3} \\ \alpha_{2,3} \\ 1 \end{pmatrix}. \quad (\star \star \star) \]

Combining (\star), (\star \star), (\star \star \star), we get:

\[\begin{bmatrix} v_1, v_2, v_3 \end{bmatrix} = \begin{bmatrix} u_1, u_2, u_3 \end{bmatrix} \begin{pmatrix} 1 & \alpha_{1,2} & \alpha_{1,3} \\ 0 & 1 & \alpha_{2,3} \\ 0 & 0 & 1 \end{pmatrix} \]

where the matrix with orthogonal columns and upper-D matrix with 1 on the diagonal.

Note: What if the set \(\{ v_1, v_2, v_3 \} \) is l.d.? Suppose \(v_3 \) is l.d. on \(v_1, v_2 \). Then
\[v_3 \in \text{Sp} \{ v_1, v_2 \} = \text{plane} \ (v_1, v_2). \]
But \(\text{plane} \ (v_1, v_2) = \text{plane} \ (u_1, u_2) \)
\[v_1 \in \text{lin.comb. of } u_1, u_2. \]
Then \(v_3 \in \text{plane} \ (u_1, u_2) \).
But then \(v_3 = P_{u_1} (v_3) + P_{u_2} (v_3) \).
Then
\[y_3 = v_3 - (P_{v_1} v_3 + P_{v_2} v_3) = 0 \]

In general:

\[Q_0 = [u_1, \ldots, u_9] \] has zero vectors iff the set \(\{ v_3, \ldots, v_9 \} \) is l.d.

Thm 1 (Key Thm. 5.82(a))

Any \(A = [A_1, \ldots, A_9] = p \times q \) for any \(p, q \) can be represented as

\[A = Q_0 R_0 \quad (6) \]

\[p \times q \quad p \times q \quad q \times q \]

where:

(i) columns of \(Q_0 \) are either mutually

- or zero, and

(ii) \(R_0 \) is upper-D, has 1s on the

main diagonal, and hence is nonsingular

(HEW3, #1(a)).

(iii) \(\| u_j \|_2 = \) distance from \(A_j \) to

\(j \)th column \(\uparrow \)

\(\text{Sp} \{ A_1, \ldots, A_9 \} = \text{Sp} \{ Q_1, \ldots, Q_9 \} \)

(see (17) of lec. 6) \(\uparrow \)

Proof:

(i), (ii) - already done.

(iii) \(u_j = A_j - (P_{A_1} A_j + \ldots + P_{A_{j-1}} A_j) = A_j - P_{\text{sp}(A_1, \ldots, A_{j-1})} A_j \)

So the claim follows from this picture. q.e.d.
Now, as we said, some columns of Q_0 can be zero. They can be thrown out. Indeed:

$$Q_0 = \begin{bmatrix} u_1 & \ldots & u_q \end{bmatrix}, \quad R_0 = \begin{bmatrix} \tilde{r}_1 \\ \vdots \\ \tilde{r}_q \end{bmatrix}.$$

Some of these $= 0$

$$Q_0 \cdot R_0 = u_1 \tilde{r}_1 + \ldots + u_q \tilde{r}_q \quad \text{(by Eq. (8) of Sec. 3) (8)}$$

So we can throw out zero columns of Q_0 and their corresponding rows R_0. If $\text{rank}(A) = k$, we will have k non-zero vectors u_1, \ldots, u_k that span $\text{span } \mathcal{R}(A) = \mathcal{R}^1 \mathcal{R}^2 \ldots \mathcal{R}^k$. Then $Q_0|_{\text{reduced}} = p \times k$, $R_0|_{\text{reduced}} = k \times q$.

It is also convenient (will see later why) to normalize the columns $[u_1, \ldots, u_k]$ of Q_0 to have length 1:

$$\tilde{u}_j = \frac{u_j}{\|u_j\|} \quad \text{or} \quad u_j = \tilde{u}_j \cdot \|u_j\|.$$

Then:

$$A = Q_0 \cdot R_0 = \begin{bmatrix} u_1 & \ldots & u_k \end{bmatrix} \begin{bmatrix} \tilde{r}_1 \\ \vdots \\ \tilde{r}_k \end{bmatrix}$$

$$= \tilde{u}_1 \left(\|u_1\| \tilde{r}_1 \right) + \ldots + \tilde{u}_k \left(\|u_k\| \tilde{r}_k \right) \quad (9)$$

$$= \begin{bmatrix} \tilde{u}_1 & \ldots & \tilde{u}_k \end{bmatrix} \begin{bmatrix} \|u_1\| \tilde{r}_1 \\ \vdots \\ \|u_k\| \tilde{r}_k \end{bmatrix}$$

$$= QR.$$
Thus we have proved

Thm. 2 (*key Thm. 5.82(b)*)

Any \(A = p \times q \) s.t. \(\text{rank}(A) = k \leq q \) can be written as

\[
A = QR
\]

\[
\begin{array}{c}
p \times q \\
p \times k \\
k \times q
\end{array}
\]

where:

(i) all columns of \(Q \) are orthonormal;

(ii) \(R \) is upper-\(\Delta \) and \(\text{rank}(R) = k \);

(iii) \(|R_{ij}| = \|u_j \| = \text{distance from } A_j \text{ to } \text{Sp}\{B_1, \ldots, B_{j-1}\} \).

Important Note: Eq. (9),

\[
[A_1, \ldots, A_q] = \tilde{u}_1 \tilde{p}_1 + \cdots + \tilde{u}_k \tilde{p}_k
\]

says that any column of \(A \) is a lin. combination of columns \(\tilde{u}_1, \ldots, \tilde{u}_k \) of \(Q \),

\[
\Rightarrow \text{all } \text{Sp}\{A_1, \ldots, A_q\} = \text{Sp}\{\tilde{u}_1, \ldots, \tilde{u}_k\}, \text{ or}
\]

\[
\text{R}(A) = \text{R}(Q)
\]

Ex. 5.83 & **5.84** — on your own.

3. **Application of the QR decomposition to the least-squares fit problem.**

In lecture 6 we showed that if

\[
A \times x \approx b
\]

is an inconsistent system of equations, then the vector \(a \) that best approximates
\(x \) in the LS sense satisfies
\[A \hat{a} = P_A b \quad (13) \]
where \(P_A b \) is the projection of \(b \) on the
span \(\text{span} \{ A_1, \ldots, A_q \} \). (See Eq. (10) in Lecture 6.)

Computationally, this QR can be found by
solving the normal eqn:
\[A^T A \hat{a} = A^T b \quad (14) \]
(we explained that we couldn't cancel by \(A^T \)).
As you will see in the new problem,
solving (14) can be sensitive to small changes
in \(b \) when columns of \(A \) are nearly l.d.
However, if one knows the QR decomposition
of \(A \), then (13) can be solved in an
efficient and robust way. (Recall that
the traditional Gram-Schmidt is not an
efficient method to find the QR decomposition;
e.g., Matlab uses other methods.)

We now show how (13) can be
solved using \(A = QR \).

\textbf{Step 1:} Recall (see Eq. (11)) that \(\mathcal{R}(A) = \mathcal{R}(Q) \).
Then \(P_A b = P_Q b \).

\textbf{Step 2:}
\[P_Q b = \underbrace{Q Q^T b}_{\text{projection matrix on the orthogonal set of columns of } Q} \]
Step 3 \[Aq = P_A \mathbf{b} \implies QRa = QQ^T \mathbf{b} \implies (\text{Eq. (4)}) \]
\[Q^TQ Ra = Q^TQ Q^T \mathbf{b} \]
\[\mathbf{I}_q \quad \mathbf{I}_q \]
\[Ra = Q^T \mathbf{b} \quad \text{(15)} \]

Since \(R \) is upper-\(\Delta \), (15) can be easily solved by back-substitution.

See Ex. (5.87) on your own.

You may also see an alternative derivation of (15) on p. 240.