Lecture 2.
Review of undergraduate Linear Algebra

1. Matrix multiplication.

Let \(A = (p \times q) \), \(B = (q \times s) \), \(A_{ik} \) = element of \(A \) in the \(i \)th row \& \(k \)th column.

Then

\[
(AB)_{ij} = \sum_{k=1}^{q} A_{ik} B_{kj}.
\]

If we write:

\[
A = \begin{bmatrix}
\vec{a}_1 \\
\vec{a}_2 \\
\vdots \\
\vec{a}_p
\end{bmatrix}, \quad B = \begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_s
\end{bmatrix}_f
\]

then

\[
AB = \text{row-by-column} \quad \text{row}
\]

\[
= \begin{bmatrix}
\vec{a}_1 B_1 & \vec{a}_1 B_2 & \ldots & \vec{a}_1 B_s \\
\vec{a}_2 B_1 & \vec{a}_2 B_2 & \ldots & \vec{a}_2 B_s \\
\vdots & \vdots & \ddots & \vdots \\
\vec{a}_p B_1 & \vec{a}_p B_2 & \ldots & \vec{a}_p B_s
\end{bmatrix}
\]

each entry is a scalar

\[
= \begin{bmatrix}
AB_1 \\
\underline{AB_2} \\
\underline{\vdots} \\
\underline{AB_s}
\end{bmatrix}
\]

\(i \)th column of \(AB \).

Properties:

- associativity: \((AB)C = A(BC) \).
- in general, matrices don't commute: \(AB \neq BA \) in general.
- but any matrix commutes with a scalar: \(\alpha A = A \alpha \).
\(AB = AC \quad \Rightarrow \quad B = C \)

E.g.:
\[
\begin{pmatrix}
1 & 3 \\
2 & 6
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
= \begin{pmatrix}
1 & 3 \\
2 & 6
\end{pmatrix}
\begin{pmatrix}
4 & 3 \\
-1 & 5
\end{pmatrix}
\]

A \quad B = \begin{pmatrix}
1 & 3 \\
2 & 6
\end{pmatrix} \quad \begin{pmatrix}
4 & 3 \\
-1 & 5
\end{pmatrix}
\]

As a corollary of the above,
\(AB = 0 \quad \Rightarrow \quad A \) or \(B = 0 \). (zero matrix)

2) Partitioned matrices (Sec. 1.5).

Matrices can be partitioned into blocks,

E.g.:
\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{pmatrix}
= \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
= \begin{pmatrix}
(2 \times 3) & (2 \times 1) \\
(1 \times 3) & (1 \times 1)
\end{pmatrix}
\]

If
\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}, \quad B = \begin{pmatrix}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23}
\end{pmatrix},
\]

\[
AB = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} & A_{11}B_{13} + A_{12}B_{23} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} & A_{21}B_{13} + A_{22}B_{23}
\end{pmatrix}
\]

provided that all matrix products \(A_{ik}B_{kj} \) are defined.

A generalization when \(A \) consists of \(m \times n \) blocks is obvious.

E.g., take
\[
B = \begin{pmatrix}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11 \\
12 & 13 & 14 & 15
\end{pmatrix}
\]
3) Another view of matrix multiplication.

Consider first

\[
A \cdot x = \begin{bmatrix} A_1, A_2, \ldots, A_q \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_q \end{bmatrix} = \begin{bmatrix} (x_1) \\ (x_2) \\ \vdots \\ (x_q) \end{bmatrix}
\]

by block multiplication

\[
A_1 x_1 + A_2 x_2 + \ldots + A_q x_q
\]

This formula is extremely important and will be used heavily throughout the course.

In words: \(A \cdot x \) is a linear combination of the columns of \(A \).

\[
\text{E.g.: } (\frac{1}{2}, \frac{3}{4})(x_1) = \frac{1}{2}x_1 + \frac{3}{4}x_2 = \frac{5}{4}x_2.
\]

Now let \(A = \begin{bmatrix} A_1, \ldots, A_q \end{bmatrix}, B = \begin{bmatrix} B_1 \\ \vdots \\ B_q \end{bmatrix} \) \(\text{rows} \)

Then

\[
AB = A_1 B_1 + \ldots + A_q B_q
\]

(\ref{AxB})

4) Solving a system of linear eqs. by Gauss-Jordan elimination.

\(\text{To solve } A \cdot x = b, \text{ we perform row reduction on } [A | b]. \)
Example 1

\[
\begin{bmatrix}
3 & -3 & 0 & 12 & 18 \\
1 & 0 & 2 & 7 & 6 \\
1 & -1 & 0 & 3 & 1 \\
-2 & 3 & 2 & -3 & -2 \\
\end{bmatrix}
\begin{bmatrix}
-9 \\
-2 \\
-5 \\
11 \\
\end{bmatrix}
\]

A \quad b

Operations

1) row1 \rightarrow row1/3
row2 \rightarrow row2 - \frac{row1}{3}
row3 \rightarrow row3 - \frac{row1}{3}
row4 \rightarrow row4 + \frac{2}{3} row1

Result:

\[
E_1 A = \begin{bmatrix}
1 & -1 & 0 & 4 & 6 & -3 \\
0 & 1 & 2 & 3 & 0 & 1 \\
0 & 0 & 0 & 1 & 5 & 2 \\
0 & 1 & 2 & 5 & 10 & 5 \\
\end{bmatrix}
\]

In matrix form (HW2):

\[
\begin{bmatrix}
\frac{1}{3} & 0 & 0 & 0 \\
-\frac{1}{3} & 1 & 0 & 0 \\
-\frac{1}{3} & 0 & 1 & 0 \\
\frac{2}{3} & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
A \\
E_1 \\
\end{bmatrix}
\]

2) row4 \rightarrow row4 - row2

Result:

\[
E_2 \cdot (E_1 A) = \begin{bmatrix}
1 & -1 & 0 & 4 & 6 & -3 \\
0 & 1 & 2 & 3 & 0 & 1 \\
0 & 0 & 0 & 1 & 5 & 2 \\
0 & 0 & 0 & 2 & 10 & 4 \\
\end{bmatrix}
\]
3) \(\text{row 4} \rightarrow \text{row 4} - 2 \cdot \text{row 3} \)

\[
E_3 \cdot (E_2E_1A) = \begin{pmatrix} 1 & -1 & 0 & 4 & 6 & -3 \\ 0 & 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\]

Result:

\[
E_3 \cdot (E_2E_1A) = \begin{pmatrix} 1 & -1 & 0 & 4 & 6 & -3 \\ 0 & 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\]

4) \(\text{column 3} \leftrightarrow \text{column 4} \)

(meaning: rename \(x_3 \leftrightarrow x_4 \))

\[
(E_3E_2E_1A)E_4 = \begin{pmatrix} 1 & -1 & 4 & 0 & 6 & -3 \\ 0 & 1 & 3 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\]

\[
\text{Intermediate result: (key thm. B.53)}.
\]

\[
\begin{pmatrix} (E_3E_2E_1 \cdot A) \\ (E_3E_2E_1 \cdot A) \cdot E_4 \end{pmatrix} = \begin{pmatrix} \ast \ast \ast \ast \ast \end{pmatrix} \quad \text{(upper-\(\Delta \) matrix \(U \))}
\]

\(E_1, E_2, E_3 \) are lower-\(\Delta \).

The product of lower-\(\Delta \) matrices is lower-\(\Delta \) (\#1 of HW2). Thus \(E_3E_2E_1 = L^\sim \) (some lower-\(\Delta \) matrix).

Thus \(L^\sim A = U \) for "any" \(A \).
Note: If in our example we had the 3rd row of A equal the 2nd row, then at step 2) we would have obtained

\[E_2 E_1 A = \begin{pmatrix} 1 & -1 & 0 & 4 & 6 & -3 \\ 0 & 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 & 4 \end{pmatrix}. \]

Then to get the form \((\text{REF})\), we would have needed to interchange the 3rd and 4th row.

Therefore, above, the "any" means "any, up to a row permutation".

Return to our example

5) We now back-substitute (start with the last nonzero row).

\[
\begin{align*}
\text{row 2} & \rightarrow \text{row 2} - 3 \times \text{row 3}, \\
\text{row 1} & \rightarrow \text{row 1} - 4 \times \text{row 3}
\end{align*}
\]

\[
\begin{pmatrix} 1 & -1 & 0 & 0 & 14 & 11 \\ 0 & 1 & 0 & 0 & -15 & -5 \\ 0 & 0 & 1 & 0 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\]

6) \text{row 1} \rightarrow \text{row 1} + \text{row 2}

\[
\begin{pmatrix} 1 & 0 & 0 & 0 & -29 & -16 \\ 0 & 1 & 0 & 0 & -15 & -5 \\ 0 & 0 & 1 & 0 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\]

\{ \text{REF or Gauss-reduced form} \}

\[
\begin{align*}
x_1 & = -16 + 29x_5 \\
x_2 & = -5 + 15x_5 \\
x_3 & = 2 - 5x_5 \\
x_4, x_5 & = \text{free variables} \\
x_1, x_2, x_3 & = \text{leading variables}
\end{align*}
\]

Switch \(x_3 \leftrightarrow x_4\) to get to the original
5) **Matrix inverses**

Let A be a square matrix. Then under certain conditions (to be specified later) there is a matrix A^{-1}, called the inverse of A, s.t.

$$A^{-1}A = I = AA^{-1},$$

where $I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$ is the $p \times p$ identity matrix.

Properties of inverses:

- $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$.

- If both A and B are $p \times p$ and have inverses, then so does AB and $(AB)^{-1} = B^{-1}A^{-1}$. **Note the order!**

Proof: It suffices to verify that $B^{-1}A^{-1} (AB) = I$.

Indeed:

$$\begin{align*}
(B^{-1}A^{-1})AB &= B^{-1}(A^{-1}A)B \\
&= B^{-1}IB = B^{-1}B = I
\end{align*}$$

Note: If A^{-1} exists, then $Ax = b$ can be solved as $x = A^{-1}b$.

However, this is mostly a theoretical but not practical tool, since to actually compute x, one uses the Gauss-Jordan elimination rather than compute A^{-1}.
Note 2: If \(A = (p \times q) \) is not square, then one can define either (but not both!) its left or right inverse, i.e.,
either \(LA = I_{q \times q} \) or \(AR = I_{p \times p} \).
However, we will use alternative tools to describe the solution of \(Ax = b \)
when \(A = p \times q \).

\(\textcircled{6} \) Linear independence of vectors.

Def. A set of vectors \(v_1, \ldots, v_q \) is called linearly independent (l.i.) if the only solution \((c_1, \ldots, c_q) \) of the vector equation
\[
 c_1 v_1 + c_2 v_2 + \ldots + c_q v_q = 0 \tag{**A**}
\]
is
\[
 c_1 = c_2 = \ldots = c_q = 0.
\]
Otherwise, the set is called linearly dependent (l.d.). Then, (**A**) holds when some of the \(c \)'s are \(\neq 0 \).

Meaning of linear dependence
Suppose one of the \(c \)'s \(\neq 0 \), e.g., \(c_1 \neq 0 \). Then divide by \(c_1 \):
\[
 v_1 = \left(\frac{c_2}{c_1} \right) v_2 + \left(\frac{-c_3}{c_1} \right) v_3 + \ldots + \left(\frac{-c_q}{c_1} \right) v_q.
\]
Thus, all vectors are l.d. iff one of them is a linear combination of the others.
In \(\mathbb{R}^2 \), two vectors are \textit{l. i.} if they are not \(\perp \):

\[
\begin{align*}
\vec{v}_1 & \quad \text{(l. i.)} \\
\vec{v}_2 & \\
\end{align*}
\]

Any three vectors in \(\mathbb{R}^2 \) are \textit{l. d.}:

\[
\begin{align*}
\vec{v}_1 & \\
\vec{v}_2 & \\
\vec{v}_3 & = c_1 \vec{v}_1 + c_2 \vec{v}_2.
\end{align*}
\]

In \(\mathbb{R}^3 \), three vectors are \textit{l. i.} if they do \textbf{not} lie in the same plane, i.e., if

\[
\vec{v}_3 \neq c_1 \vec{v}_1 + c_2 \vec{v}_2.
\]

\textbf{Question:} How can we determine if a set is \textit{l. i.}?

\[
\begin{align*}
\vec{v}_1 c_1 + \cdots + \vec{v}_9 c_9 &= 0 \\
\begin{bmatrix}
\vec{v}_1, \cdots, \vec{v}_9
\end{bmatrix}
\begin{pmatrix}
c_1 \\
\vdots \\
c_9
\end{pmatrix} &= \begin{pmatrix} 0 \\
\vdots \\
0
\end{pmatrix}
\end{align*}
\]

(see Ex. 1)

\[
\begin{align*}
\text{Transform } \begin{bmatrix}
\vec{v}_1, \cdots, \vec{v}_9
\end{bmatrix}
\text{ to REF}. & \quad \text{If there are free variables, then the set is l.d. If there are no free variables, then the set is l. i.}
\end{align*}
\]

And hence \(\text{c} \neq \text{c0} \).
Note: A zero vector is l.d. on any set of vectors. Indeed, let \(\{ \mathbf{v}_1, \ldots, \mathbf{v}_q \} \) be some set of vectors. Obviously,

\[0 = \mathbf{v}_1 + \cdots + 0 \cdot \mathbf{v}_q + c \cdot 0 = \mathbf{0}, \]

\(\{ \mathbf{v}_1, \ldots, \mathbf{v}_q, \mathbf{0} \} \) is a l.d. set. ✓
Example 2. Show formally that \(\{(\frac{1}{2}), (\frac{3}{4}), (\frac{5}{6})\} \) is l.d.

Solution: Solve \((2) c_1 + (3) c_2 + (6) c_3 = (0) \) \(\Rightarrow \)

\[
\begin{bmatrix}
1 & 3 & 5 & | & 10 \\
2 & 4 & 6 & | & 0
\end{bmatrix}
\text{ REF } \rightarrow
\begin{bmatrix}
1 & 0 & 1 & | & 0 \\
0 & 1 & 0 & | & 0
\end{bmatrix}
\]

\[c_1 - c_3 = 0 \Rightarrow c_1 = c_3 \]
\[c_2 + 2c_3 = 0 \Rightarrow c_2 = -2c_3 \] \(\Rightarrow \) \(c_3 = \text{free} \)

Then \(\frac{1}{2} c_3 + \frac{3}{4} (-2c_3) + \frac{5}{6} (c_3) = (0) \).

Since \(c_3 = \text{free} \), it can be chosen to be 1.

Then: \(\frac{1}{2} = (\frac{3}{4}) \cdot 2 + (\frac{5}{6}) \cdot (-1), \)

We have shown that the first vector is a lin. combination of the other two, \(\Rightarrow \) the set is l.d.

Note: On the contrary, the set \(\{(\frac{1}{2}), (\frac{3}{4})\} \) is l.d. i.e., Indeed,

\[
\begin{bmatrix}
1 & 3 & 5 & | & 10 \\
2 & 4 & 6 & | & 0
\end{bmatrix}
\text{ REF } \rightarrow
\begin{bmatrix}
1 & 0 & 1 & | & 0 \\
0 & 1 & 0 & | & 0
\end{bmatrix}
\]

is the only solution of \((2) c_1 + (3) c_2 = (8) \).

Corollary: If \(\{v_1, \ldots, v_q\} \) is a set of \(p \)-dimensional vectors, and if \(q > p \), then this set is l.d.
7 Singular and nonsingular matrices

Def: A square $p \times p$ matrix A is **nonsingular** if the **only solution** of $Ax = 0$ is the **trivial solution** $x = 0$.

Equivalently, A is **singular** if there is a $x \neq 0$ s.t. $Ax = 0$.

Note: If x solves $Ax = 0$, so does ax for any scalar a. Indeed:

$A(ax) = a(Ax) = a \cdot 0 = 0$.

Thm. 1: If A is $p \times p$, the following statements are equivalent:

1. A is nonsingular.
2. All columns of A are l. i.
3. A unique inverse, A^{-1}, exists.
4. $Ax = b$ has a unique solution for any b.

This theorem answers Q1 of Lecture 1.

Question: What are the possibilities regarding the number of solutions of $Ax = b$?

Example 7: Let v_1, v_2, b be vectors in IR^2. Consider the system
\[\begin{bmatrix} v_1, v_2 \end{bmatrix} (c_1, c_2) = b, \text{ or } v_1 c_1 + v_2 c_2 = b. \]

There are 3 possibilities:

1) \(v_1 \neq v_2 \), \(b \) arbitrary

A unique \((c_1, c_2)\) always exists.

This agrees with Thm. 1.

(See Sec. 6 of this lecture)

2) \(v_1 \parallel v_2 \), \(b \parallel v \)

No lin. combination of \(v_1, v_2 \) would yield \(b \).

No solutions

3) \(v_1 \parallel v_2 \parallel b \)

\[\begin{align*}
3v_1 + 0 \cdot v_2 &= b \\
v_1 - v_2 &= b \\
0 \cdot v_1 - \frac{3}{2} \cdot v_2 &= b
\end{align*} \]

\[b = 3v_1 \]

\[v_2 = -2v_1 \]

\[\text{infinitely many sol'n's} \]

Ex. 3 illustrated the general case: there are only 3 possibilities about the \# of solutions of \(Ax = b \): (1) unique sol'n, (2) no sol'n's, (3) \(\infty \) many solutions.
Thm. 2 (Key Thm. 4.16; addresses cases (1) and (3) above).

Let x_0 be some particular solution of $Ax = b$, i.e., $Ax_0 = b$. Let h range over the set of all possible solutions of the homogeneous problem $Ah = 0$. Then the set of all possible solutions of $Ax = b$ is given by $x = x_0 + h$.

Proof: Given: $Ax_0 = b$. Let x be another solution, $\Rightarrow Ax = b$.

Subtract 1st eqn. from 2nd:

$$Ax - Ax_0 = b - b$$
$$A(x - x_0) = 0 \Rightarrow x - x_0 = h$$
$$x = x_0 + h$$

q.e.d.

9/12/08

Corollary (Key Thm. Corollary 4.19, or Fredholm Alternative).

Consider $Ax = b$ with $A = (p \times q)$ (this includes the case $(p \times p)$ if $p = q$.) Then either $Ax = b$ has a unique sol'n for any b (i.e., $A = (p \times p)$ and nonsingular by Thm. 1) or $Ax = 0$ has ∞ many sol'n's, but not both.
Discussion: The 2nd possibility means that if $Ax = 0$ has nontrivial solutions $h \neq 0$, then $Ax = b$ may have either 0 or ∞ many solutions (see Ex. 3).

Note: Later we will establish an algebraic condition that will tell us w/o solving $Ax = b$ whether this eqn. has 0 or ∞ many solutions.

8. Rank of a matrix
The concept of linear dependence/independence of vectors is very important because it is closely related to how many solutions $Ax = b$ can have. Later we will see many other facets where this concept is important. Hence:

Def: The rank of a matrix is the number of its lin. independent columns.

Ask Q: What's the rank of $\begin{pmatrix} 1 & 3 & 8 \end{pmatrix}$?

Restatements of facts from Thms. 18.2 in terms of rank

(1) $A = (p \times p)$ is singular iff rank $(A) < p$.

(This is just Thm. 1).

(2) If $A = (p \times q)$ and rank $(A) < q$, then $Ax = b$ does not have a unique solution (i.e. can have 0 or ∞ many solutions).
Proof: \(\text{rank}(A) < q \Rightarrow \) columns of \(A \) are l.i.d.

\[\exists x \neq 0 \text{ s.t.} x_1 A_1 + x_2 A_2 + \ldots x_q A_q = 0, \quad \Rightarrow \]

\[A \cdot x = 0 \text{ for } x \neq 0. \]

Thus, the homogeneous eqn. \(A \cdot x = 0 \) has nontrivial solutions, \(\Rightarrow \) by the Fredholm Alternative (Corollary to Thm. 2) \(A \cdot x = b \) does not have a unique soln. \(\quad \text{q.e.d.} \)

Thm. 3 In any \(p \times q \) matrix \(A \),

the \# of l.i. columns = \# of l.i. rows.

Proof (sketch):

1) Recall Ex. 1, where we showed that

\[(E_3E_2E_1) \cdot A \cdot E_4 = \begin{pmatrix} \star & \star \\ \star & \star \\ \end{pmatrix} \]

\[U \]

The elementary row operations \((E_1, E_2, E_3)\) and column interchanges \((E_4)\) do not alter lin. dependence or independence of rows and columns. (Here is the justification is missing).

Therefore, the \# of l.i. rows and columns of \(A \) are the same as those of \(U \).

2) By inspection, \(U \) has 3 l.i. rows (recall the Note at the end of Sec. 6 of this lecture, where we showed that a zero row is always l.i. on nonzero rows).
3) U has 3 l.i. columns: 1st, 2nd, 3rd. Indeed, the 4th and 5th columns are l.i. on them:

$$\begin{pmatrix} a \\ b \\ c \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Thus, for this U, # of l.i. columns = # of l.i. rows. This is guaranteed by the diagonal structure of U:

$$\begin{pmatrix} 1 & 0 & \ast \\ 0 & 1 & \ast \\ \vdots & \vdots & \vdots \\ 0 & 0 & 1 \end{pmatrix}.$$

The same will apply to any other matrix A.

Corollary 1 Let $A = (p \times q)$.

Then $\text{rank}(A) \leq \min(p, q)$.

Corollary 2 If $A = (p \times q)$ and $p < q$ (more unknowns than eqs.),

then $Ax = 0$ has many solutions.

Proof: $\text{rank}(A) \leq p < q$, then repeat the proof of Restatement 2 above.
Thm. 4 (#5 of Sec. 4.4)

Let A be $p \times p$ and nonsingular, and let $B = (p \times q)$. Prove: $\text{rank}(B) = \text{rank}(AB)$.

Proof: posted on the website.
Read on your own.

Corollary 1 If both A and B are $p \times p$ and nonsingular, then AB is nonsingular.

Corollary 2 If $\text{rank}(B) = k$, $B = (p \times q)$, and $A = (q \times q)$ and nonsingular, then $\text{rank}(BA) = \text{rank}(B)$.

You will prove both corollaries in a HW problem.

Note that Thm. 4 + Corollary 2 can be combined:

A rank of a matrix is not changed if it is multiplied by a nonsingular matrix.

9) Range and null-space.

Let $A = [A_1, \ldots, A_q]$. Then:

Def. Range of $A = \mathcal{R}(A)$ is the set of all possible linear combinations of the columns of A. I.e., any

$Ax = x_1A_1 + \ldots + x_qA_q$ is in $\mathcal{R}(A)$.
Note that if \(Ax = b \) has a solution, then \(b \in \mathbb{R}(A) \), since \(b = A_1 x_1 + \ldots + A_q x_q \).

Def: The set of all solutions of \(Ax = 0 \) forms the null space of \(A \), \(N(A) \).

(10) Transpose of a matrix

Let \(A = (p \times q) \). Then \(A^T = (q \times p) \) with:
- rows of \(A \) = columns of \(A^T \),
- columns of \(A \) = rows of \(A^T \).

E.g., \(A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \), \(A^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \).

Properties of the transpose

- \((A + B)^T = A^T + B^T \)
- \((AB)^T = B^T A^T \) (note the order!)
- \((A^T)^T = A \)
- \((A^{-1})^T = (A^T)^{-1} \)

Restatment of Thm. 3:

\[\text{rank}(A) = \text{rank}(A^T) \]

Note: We will see that \(A^T \) plays an important role in the solution of \(Ax = b \) and \(\frac{dx}{dt} = Ax + u \).
When entries of A are complex, then instead of A^T one often uses
\[A^H = (A^*)^T \]
\[\text{c.c. & transpose} \]
A^H is called the Hermitian conjugate of A (or sometimes the adjoint of A).

Def: A is symmetric if $A = A^T$.
E.g., \(\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \) is symmetric.

A is Hermitian if $A = A^H$.
E.g., \(\begin{pmatrix} 1 & 2-3i \\ 2+3i & 4 \end{pmatrix} \) is Hermitian.

Of course, if A is real, then $A^T = A^H$.

- Hermitian matrices have special properties, as we will see later.

Remark: In most parts of this course we will use real matrices, so will refer to A^T.
When a matrix is complex, simply substitute A^H for A^T.

9/15/08

11. Determinants (Secs. 4.5 § & 4.6).

Note: Determinants are useful for theoretical representation of the solutions, but not for their computation. (See Table 4.142 on p. 169 + a few problems.)
\[\text{2x2 matrices} \]
\[
\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}
\]

\[\text{3x3 matrices} \]
\[
\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot A_{11} + a_{12}A_{12} + a_{13}A_{13}
\]
\[= a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \cdot (-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \]

Cofactor \(A_{ij} \) is the determinant of a matrix obtained from \(A \) by crossing out the \(i \)-th row and \(j \)-th column, and multiplied by \((-1)^{i+j}\).

In fact, instead of the first row, one can use the cofactor expansion w.r.t. any row or column:
\[
\det A = \sum_{k=1}^{p} a_{ik} A_{ik} \quad \text{for any } i=1, \ldots, p
\]

(\(p \times p \))

Properties of determinants:

\[\text{Thm. 5 (Corollary (4.31)(a))} \]
\[
\det A = \det A^T
\]
\[\text{but } \det A^H = \det A \]

Thm. 6. (Thm. (4.35)(a))

A is nonsingular iff \(\det(A) \neq 0 \).

Thm. 7 (Thm. (4.36))

\[\det(AB) = \det(A) \cdot \det(B) \]

Proofs — see book. (You don't need to memorize the details, but it is instructive to see them)

You must also read and know the results expressed in Corollary (4.31)(a-d) & Thm. (4.32).

Useful property: Let \(T \) be either an upper-\(\Delta \) or a lower-\(\Delta \) matrix, with diagonal entries \(t_{11}, t_{22}, \ldots, t_{pp} \). Then

\[\det(T) = t_{11} \cdot t_{22} \cdot \ldots \cdot t_{pp} \]

In particular, if any of \(t_{jj} = 0 \), then \(T \) is singular.

(Proof — a HW problem.)

Thm. 8 (Cramer's Rule); Thm. (4.49)

Let \(A \) be nonsingular. The entries \(x_i \) of the solution \(x \) of \(Ax = \vec{b} \) are given by

\[x_i = \Delta_i / \Delta, \]

where \(\Delta = \det(A) \) and \(\Delta_i = \det \) of a matrix obtained from \(A \) by replacing its \(i \)-th column with \(\vec{b} \).

(Proof — bonus HW problem.)
Example 4

Solve \((\begin{array}{cc}
1 & 3 \\
2 & 4
\end{array}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}\).

Solution:

\[
\begin{align*}
 x_1 &= \frac{\begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix}}{\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}} = -1 \\
 x_2 &= \frac{\begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}}{\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}} = 2.
\end{align*}
\]

Determinants can also be used for the theoretical representation of the inverse (but not for its computation!).

Thm. 10 (Corollary (4.41)).

If \(A\) is nonsingular, then

\[
A^{-1} = \frac{\text{adj} A}{\det A},
\]

where \(\text{adj} A\), the adjugate of \(A\), is a matrix s.t.

\[(\text{adj} A)_{ij} = A_{ji}, \text{ the } (j,i)\text{-th cofactor of } A\].