Lecture 16: Qualitative solution of \(\dot{x} = f(x) \), where \(f(x) \) is a nonlinear function.

1. Introduction

In the rest of this course we will be using the notation \(\dot{x} \) (instead of \(x' \)) for \(dx/dt \), to be consistent with the notations of the book "Nonlinear dynamics & chaos" by S. H. Strogatz.

Our main goal of this part of the course is the qualitative solution of the system of two nonlinear equations:

\[
\begin{align*}
\dot{x} &= f(x, y) \\
\dot{y} &= g(x, y),
\end{align*}
\]

(1)

where \(f, g \) are real functions. However, in this lecture we will consider its baby model, a single equation

\[
\dot{x} = f(x),
\]

(2)

where \(f(x) \) may be a nonlinear function.

First, we will make two remarks about \(f(x) \).

1) \(x \) and \(f(x) \) are assumed to be real. For if not and \(x \) and \(f \) are complex, i.e.

\[
x = u + iv \quad \text{and} \quad f = \varphi(u,v) + i\psi(u,v),
\]

then (2) is actually a system of equations:

\[
\begin{align*}
\dot{u} + iv &= \varphi(u,v) + i\psi(u,v) \\
\dot{v} &= \varphi(u,v),
\end{align*}
\]

which is (1).
2) We also assume that \(f(x) \) does not explicitly depend on \(t \). Indeed, if not and \(f = f(x,t) \) (e.g., \(f = x + 2t \)), then (2) can be rewritten as
\[
\begin{align*}
\dot{x} &= f(x,t) \\
\dot{t} &= 1,
\end{align*}
\]
which, again, is a special case of (1).

Def: Equation (2) or system (1) where \(f(x) \), \(f(x,y) \), and \(g(x,y) \) do not explicitly depend on \(t \), are called \underline{autonomous}.

So, we will consider only \underline{autonomous} Eq. (2) (here) or Eqs. (1) (later).

2) **Qualitative solution of** \(\dot{x} = f(x) \)

One can often solve \(\dot{x} = f(x) \) analytically to find \(x(t) \). However, such solutions are rarely informative, unless one plots \(x \) vs. \(t \).

(see p. 16 in Strogatz).

Instead, one is more interested in the \underline{qualitative} behavior of \(x(t) \): does it grow, decay, oscillate, tend to a constant, etc.

Def: The solution \(x(t) \) is often called the \underline{trajectory}.
Ex. 1 Consider \(\dot{x} = ax \). (3)

Let's plot the phase portrait for this system, which is \(\dot{x} \) vs \(x \):

\[
\begin{array}{c}
\begin{array}{l}
a > 0 \\
\begin{array}{c}
\dot{x} = ax \\
x > 0 \Rightarrow x \\
\dot{x} < 0 \Rightarrow x \\
x = ax
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{l}
a < 0 \\
\begin{array}{c}
\dot{x} = ax \\
x > 0 \Rightarrow x \\
\dot{x} < 0 \Rightarrow x \\
x = ax
\end{array}
\end{array}
\end{array}
\]

So the solution is unstable — it moves away from \(x = 0 \) on both sides of it.

So the solution is stable — it moves towards \(x = 0 \) from both sides.

Note that the above conclusions agree with the solution of (3), which is

\[
x = x_0 e^{at} \quad (4)
\]

\[
\begin{array}{c}
\begin{array}{l}
a > 0 \\
\begin{array}{c}
\dot{x} = ax \\
\text{moves away from } x = 0
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{l}
a < 0 \\
\begin{array}{c}
\dot{x} = ax \\
\text{moves towards } x = 0
\end{array}
\end{array}
\end{array}
\]

Def: If in (4), \(x_0 = 0 \), then \(x(t) = 0 \) for all times. The value \(x^* \) where \(f(x^*) = 0 \) is called the equilibrium, because
\[
\dot{x} = 0 \quad \text{at} \quad x = x_* . \quad (5)
\]

Another name of the equilibrium is the "fixed point" (used by Strogatz).

So, in Ex. 1, the trajectories move away from the unstable equilibrium when \(a > 0 \), and move towards the stable equilibrium when \(a < 0 \).

Ex. 2: Consider \(\dot{x} = f(x) \) where \(f(x) \) is shown below:

\[
\begin{align*}
\dot{x} > 0 & \Rightarrow x \uparrow \\
\dot{x} < 0 & \Rightarrow x \downarrow
\end{align*}
\]

All the trajectories move towards the stable equilibrium \(x_2 \) and away from the unstable equilibrium \(x_1 \).

Browse the Examples on pp 18-23 in Strogatz.
Ex. 3 Analyze the qualitative behavior of the solution of \(\dot{x} = \sin x \).

Will the solution oscillate?

NO !!

\[x \]

\[\dot{x} > 0 \]

\[\dot{x} < 0 \]

The solution asymptotically approaches one of the stable equilibria but will never reach it or pass through it. Indeed, as we said in (5):

\[\dot{x} = 0 \text{ at } x = x_* \text{ where } f(x_*) = 0, \quad (5) \text{ repeated} \]

which means that if the solution reaches the equilibrium, it remains there forever. But \(x_0 e^{-lt} \) never reaches \(x = 0 \), although it approaches it infinitely closely.

So, the following behavior is not possible:

Also, oscillating solutions are not possible in \(\dot{x} = f(x) \).
Linear stability analysis

Let x be near an equilibrium point x^*. Then we can use the Taylor expansion:

$$f(x) = f(x^*) + f'(x^*)(x-x^*) + \ldots$$

so that (2) becomes:

$$\dot{x} = f(x^*) + f'(x^*)(x-x^*) + \ldots$$

or

$$(x-x^*)' = f'(x^*)(x-x^*) + \ldots \quad (6)$$

If we denote:

$$x-x^* = \Delta x, \quad f'(x^*) = a \quad (= \text{const, since } x^* \text{ is a fixed number})$$

then (6) becomes

$$\dot{\Delta x} = a \Delta x \quad (7)$$

which is (3). Thus, near an equilibrium:

$$\Delta x = x_0 e^{at}, \text{ or } x = x^* + (x_0 - x^*) e^{at}$$

$f'(x^*) > 0 \Rightarrow \text{unstable equilibrium}$

$f'(x^*) < 0 \Rightarrow \text{stable equilibrium}$
4) Special cases where the linear stability analysis fails.

When \(f'(x^*) = 0 \), we have:

\[
(X - X^*)' = \frac{f''(x^*)}{2} (X - X^*)^2 + \frac{f'''(x^*)}{6} (X - X^*)^3 + \ldots
\]

So we may have:

1) \(b = \frac{f''(x^*) \neq 0}{=} \quad \Rightarrow \quad \dot{X} = bX^2 \quad (8) \)

When \(b > 0 \):

we have a \underline{remitable equilibrium}
(and similarly for \(b < 0 \)).

2) \(b = 0, \ c = f'''(x^*) \neq 0 \quad \Rightarrow \quad \dot{X} = cX^3 \quad (9) \)

\[\begin{array}{ll}
\text{Unstable} & \text{Stable} \\
\end{array} \]

At home you will show that the behavior near such an equilibrium is \underline{slower than exponential}.\]
5. **Bifurcations**

Suppose \(\dot{x} = f(x, r) \), where \(r \) is some coefficient (parameter). E.g., \(\dot{x} = r + x^2 \). As we change \(r \), \(f(x, r) \) changes. As a result:

- the number of equilibria, and/or
- their stability/instability can change. Such changes are called **bifurcations**. The values of \(r \) where bifurcations occur are called **bifurcation points**.

A. Saddle-node bifurcation (reason for this name - later)

"Normal form" of the equation for this bifurcation is

\[
\dot{x} = r + x^2
\] --- (10)

\(r < 0 \)

\[
\begin{align*}
\dot{x} & \quad \text{one stable + one unstable equilibria} \\
& \quad \text{senustable} \\
& \quad \text{no equilibria}
\end{align*}
\]

Bifurcation diagram:

\[
\begin{align*}
& \quad \text{unstable} \\
& \quad \text{no equilibria} \\
& \quad \text{stable}
\end{align*}
\]
Alternative forms of the normal form (10) of the saddle-node bifurcation are:

\[\dot{x} = r - x^2 \] \hspace{1cm} (11a)
\[\dot{x} = -r + x^2 \] \hspace{1cm} (11b)

Note: Referring to (10), i.e., \(\dot{x} = r + x^2 \), suppose \(r > 0 \), so that there is no equilibrium (the particle is always in motion).

But near the point \(x = 0 \), the motion slows down because \(\dot{x} \) becomes smaller.

This slowing down is a signature of a "nearby" saddle-node bifurcation.

Here is another variation of the saddle-node bifurcation; consider a cubic curve.

Note that on a vertical line \(r = \text{const} \), the stable and unstable equilibria alternate. This is a generic property for any bifurcation.
B Transcritical bifurcation

Normal form: \(\dot{x} = rx - x^2 \) (12)

\(r < 0 \)

\(\dot{x} \)

\(r = 0 \)

\(\dot{x} \)

\(r > 0 \)

Bifurcation diagram:

```
           \( X^* \)
    \( \sim \) stable

stable \( - \) unstable \( r \)

unstable
```

"The zero and nonzero equilibria exchange their stability."

C Pitchfork bifurcation

C(i) Supercritical pitchfork bifurcation

Normal form: \(\dot{x} = rx - x^3 \) (13)

Bifurcation diagram:

\(x^* = \sqrt{r} \) stable

\(r \dot{x} = x^* \)

\(r \dot{x} = -x^* \)

\(x^* - x^2 = 0 \Rightarrow x^* (r - x^2) = 0 \Rightarrow x^* = 0 \& \ x^* = \pm \sqrt{r} \quad (r > 0) \)
Ex. 4 | Draw a bifurcation diagram for
\[x' = -x + \beta \cdot \tanh x, \quad \beta > 0 \]

First, we will draw each of the two terms of \(f(x) \) and from there conclude about the shape of \(f(x) \).

\[\beta < 1 \]

Now draw the phase portraits:

\[\beta > 1 \]

Near \(\beta = 1 \) we have a supercritical pitchfork bifurcation; so \(\beta = 1 \) is the bifurcation point.
C(ii) Subcritical bifurcation

Normal form: \[\dot{x} = rx + x^3 \] (15)

At home you will show that the bifurcation diagram here is:

\[\text{unstable} \quad \text{stable} \quad \text{unstable} \quad r \]

Note that, as before, along a vertical line \(r = \text{const} \), the stability of the equilibria alternates between "stable" and "unstable".

D A more complex version of the subcritical pitchfork bifurcation — hysteresis.

Normal form: \[\dot{x} = rx + x^3 - x^5 \] (16)

Bifurcation diagram:
Hysteresis:

As we slowly increase \(r \), the particle will follow the equilibrium as shown.

If we very slowly change \(r \), we can imagine that the particle, initially sitting at a stable equilibrium \(x^*(r) \), will continue to sit there until that equilibrium becomes unstable (due to the change in \(r \)).

If we slowly decrease \(r \), the particle will follow the equilibrium in a different way.

Thus, for \(0 < r < r_0 \), whether the particle will sit at the zero or nonzero equilibrium will depend on the history of how \(r \) was changed.

Often, one draws just one picture:

\[
\begin{array}{c}
\text{hysteresis area} \\
\end{array}
\]
Asymmetric pitchfork bifurcation

Normal form: \[\dot{x} = h + rx - x^3, \quad h > 0 \]

\[(17) \]

Question: What other earlier considered bifurcation does this look like?