Diversity of nitrifying bacteria in full-scale chloraminated distribution systems

John M. Regana, Gregory W. Harringtonb, Hélène Baribeauc, Ricardo De Leon d and Daniel R. Noguerab

a Department of Civil and Environmental Engineering, The Pennsylvania State University, 215A Sackett Building, University Park, PA 16802, USA

b Department of Civil and Environmental Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, WI 53706, USA

c Carollo Engineers, 3100 South Harbor Boulevard, Suite 200, Santa Ana, CA 92704, USA

d Water Quality Laboratory, Metropolitan Water District of Southern California, 700 Moreno Avenue, La Verne, CA 91750, USA

Received 1 January 2002; revised 1 May 2002. Available online 29 October 2002.

Abstract

Chloramination for secondary disinfection of drinking water often promotes the growth of nitrifying bacteria in the distribution system...
due to the ammonia introduced by chloramine formation and decay. This study involved the application of molecular biology techniques to explore the types of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) present in several full-scale chloraminated systems. The results of AOB community characterization indicated the ubiquitous detection of representatives from the *Nitrosomonas* genus, with *Nitrosospira* constituting a negligible or small fraction of the AOB community in all but one sample. Cloning and sequencing demonstrated the presence of AOB representatives within the *Nitrosomonas oligotropha* cluster, a phylogenetic subgroup of AOB from which isolates demonstrate a high affinity for ammonia. For the NOB communities, *Nitrosospira* were detected in most of the samples, while *Nitrobacter* were only detected in a few samples. These results provide insight into the types of AOB responsible for nitrification episodes in full-scale chloraminated systems, which should help direct future studies aimed at characterizing relevant AOB growth and inactivation properties. Furthermore, the detection of NOB in most of the samples suggests a need to evaluate the contribution of biological nitrite oxidation relative to chemical oxidation in these systems.

Author Keywords: Ammonia-oxidizing bacteria; Chloramination; Nitrification;Nitrite-oxidizing bacteria; *Nitrosomonas oligotropha*; *Nitrospira*

Article Outline

1. Introduction
2. Materials and methods
 2.1. Samples
 2.2. DNA extraction and purification
 2.3. T-RFLP analysis
 2.4. Cloning and sequencing
3. Results and discussion
 3.1. Water quality at time of sample collection
 3.2. T-RFLP analysis of nitrifier communities
 3.3. Cloning and sequencing analysis
4. Conclusions
Acknowledgements
References

Corresponding author. Tel.: +1-608-263-7783; fax: +1-608-262-5199; email: noguera@engr.wisc.edu

Water Research
Volume 37, Issue 1, January 2003, Pages 197-205